
V RajaSekhar CSE Dept 1

Python Programming

MODULE - I

Agenda:

 Python Basics,

 Getting started,

 Python Objects,

 Numbers,

 Sequences:

 Strings,

 Lists,

 Tuples,

 Set and Dictionary.

 Conditionals and Loop Structures

V RajaSekhar CSE Dept 2

Python Basics

 Python is a general purpose, dynamic, high-level, and interpreted programming

language. It supports Object Oriented programming approach to develop

applications. It is simple and easy to learn and provides lots of high-level data

structures.

 Python was invented by Guido van Rossum in 1991 at CWI in Netherland.

 The idea of Python programming language has taken from the ABC programming

language or we can say that ABC is a predecessor of Python language.

 There is also a fact behind the choosing name Python. Guido van Rossum was a fan

of the popular BBC comedy show of that time, "Monty Python's Flying Circus". So

he decided to pick the name Python for his newly created programming language.

 Python has the vast community across the world and releases its version within the

short period.

 Python is easy to learn yet powerful and versatile scripting language, which makes it

attractive for Application Development.

 Python's syntax and dynamic typing with its interpreted nature make it an ideal

`language for scripting and rapid application development.

 Python supports multiple programming pattern, including object-oriented, imperative,

and functional or procedural programming styles.

 Python is not intended to work in a particular area, such as web programming. That

is why it is known as multipurpose programming language because it can be used with

web, enterprise, 3D CAD, etc.

 We don't need to use data types to declare variable because it is dynamically typed so

we can write a=10 to assign an integer value in an integer variable.

 Python makes the development and debugging fast because there is no compilation

step included in Python development, and edit-test-debug cycle is very fast.

Features of Python:

Python provides many useful features to the programmer. These features make it most

popular and widely used language. We have listed below few-essential feature of Python.

 Easy to use and Learn

 Open Source Language

 Platform Independent:

https://www.javatpoint.com/classification-of-programming-languages

V RajaSekhar CSE Dept 3

 Portability

 Dynamically Typed

 Procedure Oriented and Object Oriented

 Interpreted

 Extensible

 Embeddable

 Extensive Library

Easy to use and learn:

Python is a simple programming language. When we read Python program, we can feel like

Reading English statements. The syntaxes are very simple and only 30+ keywords are

available. When compared with other languages, we can write programs with very less

number of lines. Hence more readability and simplicity.

Open Source Language:

We can use Python software without any licence and it is freeware.Its source code is

open,so that we can we can customize based on our requirement.

Eg: Jython is customized version of Python to work with Java Applications.

Platform Independent:

Once we write a Python program, it can run on any platform without rewriting once again.

Internally PVM is responsible to convert into machine understandable form.

Portability:

Python programs are portable. ie we can migrate from one platform to another platform

very easily. Python programs will provide same results on any paltform.

Dynamically Typed:

In Python we are not required to declare type for variables. Whenever we are assigning the

value, based on value, type will be allocated automatically.Hence Python is considered as

dynamically typed language.But Java, C etc are Statically Typed Languages because we

have to provide type at the beginning only.

Procedure Oriented and Object Oriented:

Python language supports both Procedure oriented (like C, pascal etc) and object oriented

(like C++,Java) features. Hence we can get benefits of both like security and reusability etc

V RajaSekhar CSE Dept 4

Interpreted:

We are not required to compile Python programs explcitly. Internally Python interpreter

will take care that compilation. If compilation fails interpreter raised syntax errors. Once

compilation success then PVM (Python Virtual Machine) is responsible to execute.

Extensible:

We can use other language programs in Python,The main advantages of this approach are:

1. We can use already existing legacy non-Python code

2. We can improve performance of the application

Embedded:

We can use Python programs in any other language programs. i.e we can embedd Python

programs anywhere.

Extensive Library:

Python has a rich inbuilt library.Being a programmer we can use this library directly and we

are not responsible to implement the functionality.

Versions of Python:

Python Version Released Date

Python 1.0.0 January 1994

Python 1.5.0 December 31, 1997

Python 1.6 September 5, 2000

Python 2.0 October 16, 2000

Python 2.1 April 17, 2001

Python 2.2 December 21, 2001

Python 2.3 July 29, 2003

Python 2.4 November 30, 2004

Python 2.5 September 19, 2006

Python 2.6 October 1, 2008

Python 2.7 July 3, 2010

Python 3.0 December 3, 2008

Python 3.1 June 27, 2009

Python 3.2 February 20, 2011

Python 3.3 September 29, 2012

Python 3.4 March 16, 2014

V RajaSekhar CSE Dept 5

Python 3.5 September 13, 2015

Python 3.6 December 23, 2016

Python 3.7 June 27, 2018

Python 3.8 October 14, 2019

Python 3.9 October 2020

Python Applications:

 The following are different area we can use python programming language

Input and output functions

In Python 2 the following 2 functions are available to read dynamic input from the

keyboard.

 1. raw_input()

 2. input()

1. raw_input():

 This function always reads the data from the keyboard in the form of String Format. We

have to convert that string type to our required type by using the corresponding type casting

methods.

Eg:

V RajaSekhar CSE Dept 6

 x=raw_input("Enter a Value:")

 print(type(x)) It will always print str type only for any input type

2. input():

input() function can be used to read data directly in our required format.We are not required

to perform type casting.

Eg:

x=input("Enter a Value)

type(x)

20 ===> int

"DS"===>str

125.5===>float

True==>bool

 In Python 3 we have only input() method and raw_input() method is not available.

 Python3 input() function behaviour exactly same as raw_input() method of Python2.

i.e every input value is treated as str type only.

Example:

x=input("Enter First Number:")

y=input("Enter Second Number:")

a = int(x)

b = int(y)

print("Sum=",a+b)

output:

Enter First Number:10

Enter Second Number:20

Sum=30

OutPut Function:

We use the print() function or print keyword to output data to the standard output device

(screen). This function prints the object/string written in function

Examples:

print("Hello World")

We can use escape characters also

 print("Hello \n World")

 print("Hello\tWorld")

 We can use repetetion operator (*) in the string

 print(10*"Hello")

V RajaSekhar CSE Dept 7

 print("Hello"*10)

 We can use + operator also

 print("Hello"+"World")

Python Comments:

 Python Comment is an essential tool for the programmers.

 Comments are generally used to explain the code. We can easily understand the code

if it has a proper explanation.

 A good programmer must use the comments because in the future anyone wants to

modify the code as well as implement the new module; then, it can be done easily.

 In the other programming language such as C, It provides the // for single-lined

comment and /*.... */ for multiple-lined comment, but Python provides the single-

lined Python comment.

 To apply the comment in the code we use the hash(#) at the beginning of the

statement or code.

Let's understand the following example.

This is the print statement

print("Hello Python")

Here we have written comment over the print statement using the hash(#). It will not affect

our print statement.

Docstring in Python

 Python has the documentation strings (or docstrings) feature. It gives programmers

an easy way of adding quick notes with every Python module, function, class, and

method.

 You can define a docstring by adding it as a string constant. It must be the first

statement in the object‟s (module, function, class, and method) definition.

 The docstring has a much wider scope than a Python comment. Hence, it should

describe what the function does, not how. Also, it is a good practice for all functions

of a program to have a docstring.

 The strings defined using triple-quotation mark are docstring in Python. However, it

might appear to you as a regular comment

Let's understand the following example.

'''

hello good morning

welcome to python

'''

print("Doc Sting")

“””

hello good morning

welcome to python

“””

print("Doc Sting")

V RajaSekhar CSE Dept 8

Identifiers:

 A name in Python program is called identifier.

 It can be class name or function name or module name or variable name

 The following rules we have to follow while creating an didentifiers

1. Alphabet Symbols (Either Upper case OR Lower case)

2. If Identifier is start with Underscore (_) then it indicates it is private.

3. Identifier should not start with Digits.

4. Identifiers are case sensitive.

5. We cannot use reserved words as identifiers

 Eg: def=10

6. There is no length limit for Python identifiers. But not recommended to use too lengthy

identifiers.

7. Dollor ($) Symbol is not allowed in Python.

 The following are Examples

 myVar

 var_3

 cse_ds

Reserved Words

 In Python some words are reserved to represent some meaning or functionality. Such

type of words are called Reserved words.

 We cannot use a keyword as a variable name, function name or any other identifier.

They are used to define the syntax and structure of the Python language.

 In Python, keywords are case sensitive.

 There are 33 keywords in Python 3.7. This number can vary slightly over the course

of time.

 All the keywords except True, False and None are in lowercase and they must be

written as they are. The list of all the keywords is given below.

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif If or yield

Data Types or Objects

 Python is an object-oriented programming language, and in Python everything is an

object.

 Objects are also called as Data structures.

 All the Data types in python are also called as Data types

V RajaSekhar CSE Dept 9

 Data Type represents the type of data present inside a variable.

 In Python we are not required to specify the type explicitly. Based on value

provided,the type will be assigned automatically.Hence Python is Dynamically

Typed Language.

Python contains the following inbuilt data types are categorized as follows

 Fundamental or Build-in Data types or Data Structures

 Composite Data Types or Data Structures

Object Type Description Example

Fundamental or Build-in Data types or Data Structures

1. int We can use to represent the whole/integral

numbers

26,10,-12,-26

2. float We can use to represent the decimal/floating

point numbers

26.6,-26.2

3. complex We can use to represent the complex numbers 26+26j

4. bool We can use to represent the logical values(Only

allowed values are True and False)

True,False

5. str To represent sequence of Characters “MREC “,”Raj”

Composite Data Types or Data Structures

6. range To represent a range of values r=range(26)

r1=range(1,26)

r2=range(1,2,3)

7. list To represent an ordered collection of objects L1=[1,2,3,4,5,]

8. tuple To represent an ordered collections of objects t=(1,2,3,4,5)

9. set To represent an unordered collection of unique

objects

S={1,2,3,4,5}

10. dict To represent a group of key value pairs d={1:'Raj',2:'Sekh

ar'}

11. None None means Nothing or No value associated. a=None

Example:

V RajaSekhar CSE Dept 10

Python contains several inbuilt functions as follows:

1.type() : to check the type of variable

2. id(): to get address of object

3. print(): to print the value

Example:

>>> a=10

>>> type(a)

<class 'int'>

>>> id(a)

2141527304784

>>> print(a)

10

Fundamental or Build-in Data types or Data Structures

1. int data type:

 We can use int data type to represent whole numbers (integral values)

Eg: a=10

 type(a) #int

We can represent int values in the following ways

1. Decimal form

2. Binary form

3. Octal form

4. Hexa decimal form

1. Decimal form(base-10):

It is the default number system in Python

The allowed digits are: 0 to 9

Eg: a =10

2. Binary form(Base-2):

The allowed digits are : 0 & 1

Literal value should be prefixed with 0b or 0B

Eg: a = 0B1111

 a =0B123

 a=b111

3. Octal Form(Base-8):

The allowed digits are : 0 to 7

Literal value should be prefixed with 0o or 0O

Eg: a=0o123

 a=0o786

V RajaSekhar CSE Dept 11

4. Hexa Decimal Form(Base-16):

The allowed digits are : 0 to 9, a-f (both lower and upper cases are allowed)

Literal value should be prefixed with 0x or 0X

Eg:

 a =0XFACE

 a=0XBeef

 a =0XBeer

Example:

>>> a=10

>>> b=0B0101

>>> c=0o121

>>> d=0xabc

>>> print(a)

10

>>> print(b)

5

>>> print(c)

81

>>> print(d)

2748

Base Conversions

Python provide the following in-built functions for base conversions

1.bin():

We can use bin() to convert from any base to binary

Eg:

>>> bin(5)

 '0b101'

>>> bin(0o11)

 '0b1001'

 >>> bin(0X10)

 '0b10000'

2. oct():

We can use oct() to convert from any base to octal

Eg:

>>> oct(10)

 '0o12'

 >>> oct(0B1111)

 '0o17'

V RajaSekhar CSE Dept 12

 >>> oct(0X123)

 '0o443'

3. hex():

We can use hex() to convert from any base to hexa decimal

Eg:

 >>> hex(100)

 '0x64'

 >>> hex(0B111111)

 '0x3f'

 >>> hex(0o12345)

 '0x14e5'

2. float data type:

We can use float data type to represent floating point values (decimal values)

Eg: f=1.234

 type(f) float

We can also represent floating point values by using exponential form (scientific notation)

Eg: f=1.2e3

 print(f) 1200.0

instead of 'e' we can use 'E'

 The main advantage of exponential form is we can represent big values in less

memory.

 We can represent int values in decimal, binary, octal and hexa decimal forms. But

we can represent float values only by using decimal form.

Eg:

 >>> f=0B11.01

 File "<stdin>", line 1

 f=0B11.01

SyntaxError: invalid syntax

 >>> f=0o123.456

 SyntaxError: invalid syntax

 >>> f=0X123.456

 SyntaxError: invalid syntax

3. Complex Data Type:

A complex number is of the form

V RajaSekhar CSE Dept 13

a and b contain intergers or floating point values

 Eg:

 6+3j

 9+9.5j

 0.5+0.9j

In the real part if we use int value or we can specify that either by decimal,octal,binary

or hexa decimal form. But imaginary part should be specified only by using decimal form.

>>> a=0B011+4j

>>> a

 (3+4j)

 >>> a=3+0B011j

 SyntaxError: invalid syntax

Even we can perform operations on complex type values.

 >>> a=9+2.5j

 >>> b=4+3.9j

 >>>print(a+b)

(13+6.4j)

>>> a=(20+5j)

>>> type(a)

 <class 'complex'>

 Complex data type has some inbuilt attributes to retrieve the real part and

imaginary part

c=15.4+6.6j

c.real==>15.4

c.imag==>6.6

 We can use complex type generally in scientific Applications and electrical

engineering Applications

4. bool data type:

 We can use this data type to represent boolean values.

 The only allowed values for this data type are:True and False

 Internally Python represents True as 1 and False as 0

b=True

type(b) =>bool

V RajaSekhar CSE Dept 14

Eg:

a=20

b=30

c=a<b

print(c)==>True

True+True==>2

True-False==>1

5. str type:

 str represents String data type.

 A String is a sequence of characters enclosed within single quotes or double quotes.

s1='MREC'

s1="MREC"

 By using single quotes or double quotes we cannot represent multi line string literals.

s1="MREC DS"

 For this requirement we should go for triple single quotes(''') or triple double

quotes(""")

s1='''MREC

 DS'''

s1="""MREC

 DS"""

 We can also use triple quotes to use single quote or double quote in our String.

>>> s1='''"This is mrec"'''

>>> s1

'"This is mrec"'

 We can embed one string in another string

>>> s1='''This "Python Programming Session" for DS Students'''

>>> s1

'This "Python Programming Session" for DS Students'

Slicing of Strings:

 slice means a piece

 [] operator is called slice operator,which can be used to retrieve parts of String.

 In Python Strings follows zero based index.

 The index can be either +ve or -ve.

 +ve index means forward direction from Left to Right

 -ve index means backward direction from Right to Left

Eg:

-7 -6 -5 -4 -3 -2 -1

V RajaSekhar CSE Dept 15

>>> s="MREC DS"

>>> s[0]

'M'

>>> s[-7]

'M'

>>> s[3]

'C'

>>> s[-4]

'C'

>>> s[-10]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

>>> s[50]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

>>> s[1:4]

'REC'

>>> s[0:4]

'MREC'

>>> s[0:]

'MREC DS'

>>> s[:4]

'MREC'

>>> s[:]

'MREC DS'

>>> len(s)

7

Type Casting in Python

We can convert one type value to another type. This conversion is called Typecasting or

Type conversion.

The following are various inbuilt functions for type casting.

1. int()

2. float()

M R E C D S

0 1 2 3 4 5 6

V RajaSekhar CSE Dept 16

3. complex()

4. bool()

5. str()

1.int():

 We can use this function to convert values from other types to int Type.

 We can convert from any type to int except complex type.

 we want to convert str type to int type, compulsary str should contain only integral

value and should be specified in base-10

Eg:

1) >>> int(13.87)

2) 13

4) >>> int(True)

5) 1

6) >>> int(False)

7) 0

8) >>> int("19")

10) 19

11) >>> int(10+5j)

12) TypeError: can't convert complex to int

13) >>> int("10.5")

14) ValueError: invalid literal for int() with base 10: '10.5'

15) >>> int("ten")

16) ValueError: invalid literal for int() with base 10: 'ten'

17) >>> int("0B1111")

18) ValueError: invalid literal for int() with base 10: '0B1111'

2. float():

 We can use float() function to convert other type values to float type.

 We can convert any type value to float type except complex type.

 Whenever we are trying to convert str type to float type compulsary str should be

either integral or floating point literal and should be specified only in base-10.

Eg:

1) >>> float(26)

2) 26.0

3) >>> float(True)

4) 1.0

5) >>> float(False)

6) 0.0

7) >>> float("26")

8) 26.0

V RajaSekhar CSE Dept 17

9) >>> float("26.5")

10) 26.5

11) >>> float(26+5j)

12) TypeError: can't convert complex to float

13) >>> float("ten")

14) ValueError: could not convert string to float: 'ten'

15) >>> float("0B1011")

16) ValueError: could not convert string to float: '0B1011'

3.complex():

 We can use complex() function to convert other types to complex type.

 We can use this function to convert x into complex number with real part x and

imaginary

 We can use this method to convert x and y into complex number such that x will be

real part and y will be imaginary part.

Eg:

1) complex(26)

 26+0j

2) complex(26.26)

 26.26+0j

3) complex(True)

 1+0j

4) complex(False)

 0j

5) complex("26")

 26+0j

6) complex("26.26")

 26.26+0j

7) complex("MREC")

ValueError: complex() arg is a malformed string

8)complex(26,26)

 26+26j

 9)complex(True,False)

 1+0j

4. bool():

 We can use this function to convert other type values to bool type.

Eg:

1) bool(0)

V RajaSekhar CSE Dept 18

False

2) bool(1)

True

3) bool(26)

True

4) bool(26.26)

True

5) bool(0.26)

True

6) bool(0.0)

False

7) bool(26-26j)

True

8) bool(0+26.26j)

True

9) bool(0+0j)

False

10) bool("True")

True

11) bool("False")

True

12) bool("")

False

5. str():

We can use this method to convert other type values to str type

Eg:

1) >>> str(26)

'26'

3) >>> str(26.26)

 '26.26'

5) >>> str(26+5j)

'(26+5j)'

7) >>> str(True)

'True'

 8)>>>str(False)

 „False‟

V RajaSekhar CSE Dept 19

Operators in Python

An operator is a symbol that tells the compiler to perform certain mathematical or logical

Manipulations. Operators are used in program to manipulate data and variables.

Python language supports the following types of operators.

1. Arithmetic Operators

2. Relational Operators or Comparison Operators

3. Logical operators

4. Bitwise operators

5. Assignment operators

6. Special operators

1. Arithmetic Operators:

Arithmetic operators are used with numeric values to perform common mathematical

operations:

 / operator always performs floating point arithmetic. Hence it will always

returns float value.

 Floor division (//) can perform both floating point and integral arithmetic. If

arguments are int type then result is int type. If at least one argument is float

type then result is float type.

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then:

Operator Name Example

+ Addition - Adds values on either side of the operator x + y=7

-
Subtraction - Subtracts right hand operand from left hand
operand

x – y=3

*
Multiplication - Multiplies values on either side of the
operator

x * y=10

/
Division - Divides left hand operand by right hand
operand

x / y=2.5

%
Modulus - Divides left hand operand by right hand
operand and returns remainder

x % y=1

**
Exponent - Performs exponential (power) calculation on

operators
x ** y=25

//
Floor Division - The division of operands where the result
is the quotient in which the digits after the decimal point
are removed.

x // y=2

Eg:

>>> x=5

>>> y=2

>>> print('x+y=',x+y)

x+y= 7

V RajaSekhar CSE Dept 20

>>> print('x-y=',x-y)

x-y= 3

>>> print('x*y=',x*y)

x*y= 10

>>> print('x/y=',x/y)

x/y= 2.5

>>> print('x%y=',x%y)

x%y= 1

>>> print('x**y=',x**y)

x**y= 25

>>> print('x//y=',x//y)

x//y= 2

2. Relational Operators or Comparison Operators

Comparison operators are used to compare two values:

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then:

Operator Name Example

==
Checks if the value of two operands are equal or not, if yes then
condition becomes true

x == y=False

!=
Checks if the value of two operands are equal or not, if values
are not equal then condition becomes true.

x != y=True

>
Checks if the value of left operand is greater than the value of
right operand, if yes then condition becomes true.

x > y=True

<
Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

x < y=False

>=
Checks if the value of left operand is greater than or equal to the
value of right operand, if yes then condition becomes true.

x >= y=True

<=
Checks if the value of left operand is less than or equal to the
value of right operand, if yes then condition becomes true.

x <= y=False

Eg:

>>> x=5

>>> y=2

>>> print('x==y=',x==y)

x==y= False

>>> print('x!=y=',x!=y)

x!=y= True

>>> print('x>y=',x>y)

x>y= True

V RajaSekhar CSE Dept 21

>>> print('x<y=',x<y)

x<y= False

>>> print('x>=y=',x>=y)

x>=y= True

>>> print('x<=y=',x<=y)

x<=y= False

3. Logical operators:

Logical operators are used to combine conditional statements:

X Y X AND Y X OR Y NOT X

False False False False True

False True False True True

Ture False False True False

True True True True False

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then:

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

or Returns True if one of the statements is true x < 5 or x < 4

not Reverse the result, returns False if the result is true not(x < 5 and x < 10)

Eg:

>>> x=5

>>> y=2

>>> x and y

2

>>> print(x>=5 and y<=5)

True

>>> print(x>=5 or y<=5)

True

>>> print(not x>=5)

False

4. Bitwise operators:

 Bitwise operator works on bits and performs bit by bit operation.

 We can apply these operators bitwise on int and boolean types.

 By mistake if we are trying to apply for any other type then we will get Error.

V RajaSekhar CSE Dept 22

Truth table for bit wise operation Bit wise operators

x Y x|y x & y x ^ y

Operator_symbol Operator_name

0 0 0 0 0 & Bitwise_AND

0 1 1 0 1 | Bitwise OR

1 0 1 0 1 ~ Bitwise_NOT

1 1 1 1 0 ^ XOR

<< Left Shift

>> Right Shift

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left
shift

Shift left by pushing zeros in from the right and let the leftmost bits
fall off

>> Signed right
shift

Shift right by pushing copies of the leftmost bit in from the left, and let
the rightmost bits fall off

Eg:

>>> x=5

>>> y=2

>>> print('x & y=',x&y)

x & y= 0

>>> print('x | y=',x|y)

x | y= 7

>>> print('X ^ y=',x^y)

X ^ y= 7

>>> print('~x=',~x)

~x= -6

>>> print('x>>1=',x>>1)

x>>1= 2

>>> print('y<<1=',y<<1)

y<<1= 4

6.Assignment operators:

Assignment operators are used to assign values to variables:

V RajaSekhar CSE Dept 23

Operator Example Equal to

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Eg:

>>> x=5

>>> x+=3

>>> print('x=x+3=',x)

x=x+3= 8

>>> x-=3

>>> print('x=x-3=',x)

x=x-3= 5

>>> x*=3

>>> print('x=x*3=',x)

x=x*3= 15

>>> x/=3

>>> print('x=x/3=',x)

x=x/3= 5.0

>>> x%=3

>>> print('x=x%3=',x)

x=x%3= 2.0

>>> x//=3

>>> print('x=x//3=',x)

x=x//3= 0.0

>>> x**=3

>>> print('x=x**3=',x)

x=x**3= 0.0

>>> x=5

>>> x&=3

>>> print('x=x&3=',x)

x=x&3= 1

>>> x|=3

>>> print('x=x|3=',x)

x=x|3= 3

>>> x^=3

>>> print('x=x^3=',x)

x=x^3= 0

>>> x>>=3

>>> print('x=x>>3=',x)

x=x>>3= 0

>>> x<<=3

>>> print('x=x<<3=',x)

x=x<<3=0

5. Special operators:

Python defines the following 2 special operators

1. Identity Operators

2. Membership operators

V RajaSekhar CSE Dept 24

1. Identity Operators

 Identity Operators in Python are used to compare the memory location of two

objects. The two identity operators used in Python are (is, is not).

 Operator is: It returns true if two variables point the same object and false

otherwise

 Operator is not: It returns false if two variables point the same object and true

otherwise2 identity operators are available.

Operator Description Example

is Returns True if both variables are the same object x is y

is not Returns True if both variables are not the same object x is not y

Eg:

>>> x=5

>>> y=5

>>> print(x is y)

True

>>> print(id(x))

2265011481008

>>> print(id(y))

2265011481008

>>> print(x is not y)

False

2. Membership Operators

 These operators test for membership in a sequence such as lists, strings or

tuples. There are two membership operators that are used in Python. (in, not

in). It gives the result based on the variable present in specified sequence or

string

 For example here we check whether the value of x=4 and value of y=8 is

available in list or not, by using in and not in operators.

Operator Description Example

in Returns True if a sequence with the specified value is
present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

V RajaSekhar CSE Dept 25

Eg:

>>> x="MREC CSE-DS Dept"

>>> print('M' in x)

True

>>> print('-' in x)

True

>>> print('DS' in x)

True

>>> print('1' not in x)

True

>>> print('M' not in x)

False

Precedence and Associativity of Operators in Python

 When an expression has more than one operator, then it is the relative priorities of

the operators with respect to each other that determine the order in which the

expression is evaluated.

Operator Precedence: This is used in an expression with more than one operator with

different precedence to determine which operation to perform first.

Eg:10+20*30

10 + 20 * 30 is calculated as 10 + (20 * 30) and not as (10 + 20) * 30

Example:

>>> exp=10+20*30

>>> print(exp)

610

V RajaSekhar CSE Dept 26

Operator Associativity:

 When two operators have the same precedence, associativity helps to determine the

order of operations.

 Associativity is the order in which an expression is evaluated that has multiple

operators of the same precedence. Almost all the operators have left-to-right

associativity.

 For example, multiplication and floor division have the same precedence. Hence, if

both of them are present in an expression, the left one is evaluated first.

Example: „*‟ and „/‟ have the same precedence and their associativity is Left to Right, so the

expression “100 / 10 * 10” is treated as “(100 / 10) * 10”.

Example:

>>> exp=100/10*10

>>> print(exp)

100.0

 Please see the following precedence and associativity table for reference. This table

lists all operators from the highest precedence to the lowest precedence.

Operator Description Associativity

() Parentheses left-to-right

** Exponent right-to-left

* / % Multiplication/division/modulus left-to-right

+ – Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <=

> >=

Relational less than/less than or equal to

Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

is, is not

in, not in

Identity

Membership operators

left-to-right

V RajaSekhar CSE Dept 27

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

Not Logical NOT right-to-left

And Logical AND left-to-right

Or Logical OR left-to-right

=
+= -=

*= /=
%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment

Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment

Bitwise shift left/right assignment

right-to-left

Conditionals and Loop Structures

A control structure directs the order of execution of the statements in program.The Control

statements as categorized as follows.

Conditional statement

 Conditional statements will decide the execution of a block of code based on the

expression.

 The conditional statements return either True or False.

 A Program is just a series of instructions to the computer, But the real strength of

Programming isn‟t just executing one instruction after another. Based on how the

expressions evaluate, the program can decide to skip instructions, repeat them, or

choose one of several instructions to run. In fact, you almost never want your

programs to start from the first line of code and simply execute every line, straight to

the end. Flow control statements can decide which Python instructions to execute

under which conditions.

 Python supports four types of conditional statements,

V RajaSekhar CSE Dept 28

1. Simple if or if statement

2. if – else Statement

3. if else if (elif) Statement

4. nested if statement

Indentation:Python relies on indentation (whitespace at the beginning of a line) to define

scope in the code. Other programming languages often use curly-brackets for this purpose.

1) Simple if or if statement

if condition : statement

 or

if condition :

 statement-1

 statement-2

 statement-3

If condition is true then statements will be executed

Example:

>>> a=10

>>> b=5

>>> if(a>b):

 print("a is big")

a is big

>>> if a>b:

 print("a is big")

a is big

2) if else:

if condition :

 Statements-1

else :

 Statements-2

if condition is true then Statements-1 will be executed otherwise Statements-2 will be

executed.

Example:

>>> a=10

>>> b=25

>>> if(a>b):

 print("a is big")

else:

 print("b is big")

V RajaSekhar CSE Dept 29

b is big

3) if elif else:

Syntax:

if condition1:

 Statements-1

elif condition2:

Statements -2

elif condition3:

Statements -3

elif condition4:

Statements -4

 ...

else:

 Default Action

Based condition the corresponding action will be executed.

Example:

>>> Option=int(input("Enter a value b/w(1-5)"))

Enter a value b/w(1-5)2

>>> if(Option==1):

 print("you entered one")

elif(Option==2):

 print("You entered Two")

elif(Option==3):

 print("You entered Three")

elif(Option==4):

 print("You entered Four")

elif(Option==5):

 print("You entered Five")

else:

 print("Enter Value b/w (1-5) only")

You entered Two

4. nested if statement

We can use if statements inside if statements, this is called nested if statements.

Synatx:

V RajaSekhar CSE Dept 30

if (condition1):

 # Executes when condition1 is true

 if (condition2):

 # Executes when condition2 is true

 # if Block is end here

if Block is end here

Example:

>>> username=input("enter user name:")

enter user name:Raj

>>> pwd=input("Enter password")

Enter passwordRaj

>>> if(username=="Raj"):

 if(pwd=="Raj"):

 print("Login successful:")

 else:

 print("Invalid pwd")

else:

 print("Invalid Username")

Login successful:

Iterative Statements

If we want to execute a group of statements multiple times then we should go for Iterative

statements.

Python supports 2 types of iterative statements.

1. for loop

2. while loop

1) for loop:

If we want to execute some action for every element present in some sequence(it may be

string or collection)then we should go for for loop.

Syntax:

for x in sequence :

 body

Where sequence can be string or any collection.

Body will be executed for every element present in the sequence.

Eg 1: To print characters present in the given string

>>> s="MREC"

>>> for r in s:

 print(r)

M

V RajaSekhar CSE Dept 31

R

E

C

Eg2: To print characters present in string index wise:

>>> i=0

>>> for x in s:

 print('The character present at ',i,'index:',x)

 i+=1

The character present at 0 index: M

The character present at 1 index: R

The character present at 2 index: E

The character present at 3 index: C

Eg3: To print Sequence of values:

>>> for i in (1,2,3,4,5):

 print(i)

1

2

3

4

5

2) while loop:

If we want to execute a group of statements iteratively until some condition false,then we

should go for while loop.

Syntax:

 while condition :

 body

 Eg: To print numbers from 1 to 5 by using while loop

>>> i=1

>>> while(i<=5):

 print(i)

 i+=1

1

2

3

4

5

V RajaSekhar CSE Dept 32

Eg: To display the sum of first n numbers

n=int(input("Enter n value:"))

sum=0

i=1

while i<=n:

 sum=sum+i

 i=i+1

print("sum of ",n," elements are=",sum)

OutPut:

 Enter n value:5

 sum of 5 elements are= 15

Nested Loops:

 Sometimes we can take a loop inside another loop,which are also known as nested

loops

 A nested loop is a loop inside a loop.

 The "inner loop" will be executed one time for each iteration of the "outer loop":

Syntax:

 while expression:

 while expression:

 statement(s)

 statement(s)

Eg1:

r=1

while(r<=3):

 c=1

 while(c<=5):

 print("r=",r,"c=",c)

 c=c+1

 print('\n')

 r=r+1

OutPut:

r= 1 c= 1 r=2 c=1 r=3 c=1

r= 1 c= 2 r=2 c=2 r=3 c=2

r= 1 c= 3 r=2 c=3 r=3 c=3

r= 1 c= 4 r=2 c=4 r=3 c=4

r= 1 c= 5 r=2 c=5 r=3 c=5

Eg2:

for r in (1,2,3):

 for c in (1,2,3,4,5):

V RajaSekhar CSE Dept 33

 print('r=',r,'c=',c)

 print('\n')

OutPut:

r= 1 c= 1 r=2 c=1 r=3 c=1

r= 1 c= 2 r=2 c=2 r=3 c=2

r= 1 c= 3 r=2 c=3 r=3 c=3

r= 1 c= 4 r=2 c=4 r=3 c=4

r= 1 c= 5 r=2 c=5 r=3 c=5

Transfer Statements

1) break:

 We can use break statement inside loops to break loop execution based on some

condition.

Eg:

for r in (1,2,3,4,5):

 if(r==3):

 print("Break the loop")

 break

 print(r)

OutPut:

1

2

Break the loop

2) continue:

 We can use continue statement to skip current iteration and continue next iteration.

Eg 1: To print even numbers in the range 1 to 10

for r in (1,2,3,4,5,6,7,8,9,10):

 if(r%2!=0):

 continue

 print(r)

OutPut:

2

4

6

8

10

V RajaSekhar CSE Dept 34

Composite Data Types or Data Structures

 The following are different Composite data type in python

6. range Data Type:

 range Data Type represents a sequence of numbers. The elements present in range

Data type are not modifiable. i.e range Data type is immutable

 We can access elements present in the range Data Type by using index.

Eg:

1. range(5)generate numbers from 0 to 4

Eg:

r=range(5)

for i in r :

print(i)

OutPut: 0 1 2 3 4 5

2. range(5,10)generate numbers from 5 to 9

r = range(5,10)

for i in r :

print(i)

OutPut:5 6 7 8 9

3. range(1,10,2)2 means increment value

r = range(1,10,2)

for i in r :

print(i)

OutPut: 1 3 5 7 9

4. r=range(0,5)

r[0]==>0

r[15]==>IndexError: range object index out of range

We cannot modify the values of range data type

7.list data type:

 If we want to represent a group of values as a single entity where insertion order

required to preserve and duplicates are allowed then we should go for list data type.

 An ordered, mutable, heterogeneous collection of elements is nothing but list, where

Duplicates also allowed.

 insertion order is preserved

 heterogeneous objects are allowed

 duplicates are allowed

 Growable in nature

 values should be enclosed within square brackets.

1. Eg:

V RajaSekhar CSE Dept 35

 list=[26,26.5,'Raj',True]

 print(list)

output [26,26.5,'Raj',True]

2. Eg:

 list=[10,20,30,40]

 >>> list[0]

 10

 >>> list[-1]

 40

 >>> list[1:3]

 [20, 30]

 >>> list[0]=100

 >>> print(list)

 ...

 100

40

 30

 40

 list is growable in nature. i.e based on our requirement we can increase or decrease

the size.

>>> list=[10,20,30]

>>> list.append("raj")

>>> list

[10, 20, 30, „raj‟]

>>> list.remove(20)

 >>> list

 [10, 30, „raj‟]

 >>> list1=list*2

>>> list1

 [10, 30, 'raj', 10, 30, 'raj']

Creating list by using range data type:

 We can create a list of values with range data type

Eg:

>>> l = list(range(5))

>>>print(l)

[0, 1, 2, 3, 4]

V RajaSekhar CSE Dept 36

8. tuple data type:

 tuple data type is exactly same as list data type except that it is immutable.i.e we

cannot chage values.

 Tuple elements can be represented within parenthesis.

 tuple is the read only version of list

Eg:

>>> t1=(1,2,3,4)

 >>>type(t)

 <class 'tuple'>

 >>>t1[0]=26

 TypeError: 'tuple' object does not support item assignment

 >>> t.append("Raj")

 AttributeError: 'tuple' object has no attribute 'append'

 >>> t.remove(2)

 AttributeError: 'tuple' object has no attribute 'remove'

9. set Data Type:

 If we want to represent a group of values without duplicates where order is not

important then we should go for set Data Type

 insertion order is not preserved

 duplicates are not allowed

 heterogeneous objects are allowed

 index concept is not applicable

 It is mutable collection

 Growable in nature, based on our requirement we can increase or decrease

the size

Eg:

>>> s={1,2,"raj",True,1,2}

>>> s

{1, 2, 'raj'}

>>> s.remove(2)

>>> s

{1, 'raj'}

>>> s.add(10)

>>> s

{1, 10, 'raj'}

>>> s.add("MREC")

>>> s

{1, 10, 'raj', 'MREC'}

V RajaSekhar CSE Dept 37

10.dict Data Type:

 If we want to represent a group of values as key-value pairs then we should go for

dict data type.

 Duplicate keys are not allowed but values can be duplicated. If we are trying to insert

an entry with duplicate key then old value will be replaced with new value.

Eg:

>>> d={1:"one",2:"Two",3:"Three"}

>>> d[1]

'one'

>>> d

{1: 'one', 2: 'Two', 3: 'Three'}

>>> d[4]="Four"

>>> d

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four'}

>>> d[5]="error"

>>> d

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'error'}

>>> d[5]="Five"

>>> d

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five'}

11. None Datatype:

 The None Datatype is used to define the null value or no value, the none value

means not 0, or False value, and it is a data it's own

 None keyword is an object and is a data type of nonetype class

 None datatype doesn‟t contain any value.

 None keyword is used to define a null variable or object.

 None keyword is immutable.

Eg:

Assume a=10, that means a is the reference variable pointing to 10 and if I take a=none

then a is not looking to the object 10

>>> a=10

>>> type(a)

<class 'int'>

>>> a=None

>>> type(a)

<class 'NoneType'>

