
V RajaSekhar CSE Dept 1

Python Programming

MODULE – III(Part-1)

Agenda:

 Regular Expression (RE): Introduction,

 Special Symbols and Characters,

 REs and Python.

V RajaSekhar CSE Dept 2

Regular Expression (RE):

 A regular expression is a series of characters used to search or find a pattern in a

string.

 In other words, a regular expression is a special sequence of characters that form a

pattern.

 The regular expressions are used to perform a variety of operations like searching a

substring in a string, replacing a string with another, splitting a string, etc.

 The Python programming language provides a built-in module re to work with

regular expressions.

 There is a built-in module that gives us a variety of built-in methods to work with

regular expressions. In Python, the regular expression is known as RegEx in short

form.

Special Symbols and Characters

Creating Regular Expression:
The regular expressions are created using the following.
 Metacharacters

 Special Sequences

 Sets

Metacharacters
 Metacharacters are the characters with special meaning in a regular expression. The

following table provides a list of metacharacters with their meaning.

Metacharacters Meaning

[] Square brackets specifies a set of characters you wish to match.

\ Backlash \ is used to escape various characters including all
metacharacters.

. A period matches any single character (except newline '\n')

^ The caret symbol ^ is used to check if a string starts with a certain

character.

$ The dollar symbol $ is used to check if a string ends with a certain

character.

* The star symbol * matches zero or more occurrences of the pattern left to

it.

+ The plus symbol + matches one or more occurrences of the pattern left

to it.

{ } Consider this code: {n,m}. This means at least n, and at most m

repetitions of the pattern left to it.

| Vertical bar | is used for alternation (or operator).

() Parentheses () is used to group sub-patterns.

? The question mark symbol ? matches zero or one occurrence of the
pattern left to it.

V RajaSekhar CSE Dept 3

[] - Square brackets

 Square brackets specifies a set of characters you wish to match.

. - Period

 A period matches any single character (except newline '\n').

Expression String Matched?

.. C No match

Ds 1 match

Cse 1 match

Cseds 2 matches

cse ds 3 matches(including space)

^ - Caret

 The caret symbol ^ is used to check if a string starts with a certain character.

Expression String Matched?

^c C 1 match

Cse 1 match

Ds No match

^ds cse ds 1 match

Cse No match

$ - Dollar

 The dollar symbol $ is used to check if a string ends with a certain character.

Expression String Matched?

c$ C 1 match

Mrec 1 match

Ds No match

* - Star

 The star symbol * matches zero or more occurrences of the pattern left to it.

Expression String Matched?

abc* ab 1 match

abc 1 match

abcabc 2 match

cse No match

Dsabc 1 match

Expression String Matched?

[abcd] Cse 1 match

cse ds 2 matches

MREC No match

cse ds mrec 3 matches

V RajaSekhar CSE Dept 4

+ - Plus

 The plus symbol + matches one or more occurrences of the pattern left to it.

Expression String Matched?

ab+c Ac No match (no a character)

Abc 1 match

Abbbc 1 match

Cse No match (a is not followed by n)

Dsabc 1 match

? - Question Mark

 The question mark symbol ? matches zero or one occurrence of the pattern left to

it.

Expression String Matched?

ab?c ac 1 match

abc 1 match

abbbc No match

abrc No match

cseabc 1 match

{} - Braces

 Consider this code: {n,m}. This means at least n, and at most m repetitions of the

pattern left to it.

Expression String Matched?

a{2,3} abc dat No match

abc data 1 match (at daat)

aabc daaat 2 matches (at aabc and daaat)

aabc daaaat 2 matches (at aabc and daaaat)

| - Alternation

 Vertical bar | is used for alternation (or operator).

Expression String Matched?

a|b Cde No match

Ade 1 match (match at ade)

acdbea 3 matches (at acdbea)

() - Group

 Parentheses () is used to group sub-patterns. For example, (a|b|c)xz match any

string that matches either a or b or c followed by xz

V RajaSekhar CSE Dept 5

Expression String Matched?

(a|b|c)xz ab xz No match

Abxz 1 match (match at abxz)

axz cabxz 2 matches (at axzbc cabxz)

\ - Backslash

 Backlash \ is used to escape various characters including all metacharacters. For

example,

 \$a match if a string contains $ followed by a. Here, $ is not interpreted by a

RegEx engine in a special way.

 If you are unsure if a character has special meaning or not, you can put \ in front

of it. This makes sure the character is not treated in a special way.

>>> print(re.findall(r'$a','dscse$a'))

[]

>>> print(re.findall(r'\$a','dscse$a'))

['$a']

Special Sequences
 A special sequence is a character prefixed with \, and it has a special meaning. The

following table gives a list of special sequences in Python with their meaning.

Special

Sequences

Meaning

\A Matches if the specified characters are at the start of a string.

\b Matches if the specified characters are at the beginning or end of a word.

\B Opposite of \b. Matches if the specified characters are not at the beginning
or end of a word.

\d Matches any decimal digit. Equivalent to [0-9]

\D Matches any non-decimal digit. Equivalent to [^0-9]

\s Matches where a string contains any whitespace character. Equivalent to [

\t\n\r\f\v].

\S Matches where a string contains any non-whitespace character. Equivalent

to [^ \t\n\r\f\v].

\w Matches any alphanumeric character (digits and alphabets). Equivalent to

[a-zA-Z0-9_]. By the way, underscore _ is also considered an alphanumeric
character.

\W Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-9_]

\Z Matches if the specified characters are at the end of a string.

 \A - Matches if the specified characters are at the start of a string.

Expression String Matched?

\Acse cse ds Match

ds cse No match

V RajaSekhar CSE Dept 6

 \b - Matches if the specified characters are at the beginning or end of a word.

Expression String Matched?

\bcse Csemrec Match

ds csemrec Match

Dscsemrec No match

ds\b cse ds Match

cse ds mrec Match

cse dsmrec No match

 \B - Opposite of \b. Matches if the specified characters are not at the beginning

or end of a word.

Expression String Matched?

\Bcse Csemrec No match

ds csemrec No Match

Dscsemrec Match

ds\B cse ds No match

cse ds mrec No match

cse dsmrec Match

 \d - Matches any decimal digit. Equivalent to [0-9]

Expression String Matched?

\d 12mrec3 3 matches (at 12mrec3)

cse ds No match

 \D - Matches any non-decimal digit. Equivalent to [^0-9]

Expression String Matched?

\D cseds123 5 matches (at cseds123)

1345 No match

 \s - Matches where a string contains any whitespace character. Equivalent to [

\t\n\r\f\v].

Expression String Matched?

\s cse\tds\nmrec 2 match

Csedsmrec No match

 \S - Matches where a string contains any non-whitespace character. Equivalent to

[^ \t\n\r\f\v].

Expression String Matched?

\S a b 2 matches (at a b)

 No match

V RajaSekhar CSE Dept 7

 \w - Matches any alphanumeric character (digits and alphabets). Equivalent to [a-

zA-Z0-9_]. By the way, underscore _ is also considered an alphanumeric

character.

Expression String Matched?

\w 12&": ;c 3 matches (at 12&": ;c)

%"> ! No match

 \W - Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-9_]

Expression String Matched?

\W 1cse@ds 1 match (at 1cse@ds)

Cseds No match

 \Z - Matches if the specified characters are at the end of a string.

Expression String Matched?

ds\Z cse ds 1 match

cse ds mrec No match

ds cse. No match

Sets
 A set is a set character enclosed in [], and it has a special meaning. The following

table gives a list of sets with their meaning.

Set Meaning

[aeiou] Matches with one of the specified characters are present

[d-s] Matches with any lower case character from d to s

[^aeiou] Matches with any character except the specified

[1234] Matches with any of the specified digit

[3-8] Matches with any digit from 3 to 8

[a-zA-Z] Matches with any alphabet, lower or UPPER

 [aeiou] Matches with one of the specified characters are present

>>> print(re.findall(r'[aeiou]','cse and ds dept'))

['e', 'a', 'e']

 [d-s] Matches with any lower case character from d to s

>>> print(re.findall(r'[a-h]','cse and ds dept'))

['c', 'e', 'a', 'd', 'd', 'd', 'e']

 [^aeiou] Matches with any character except the specified

>>> print(re.findall(r'[^aeiou]','cse and ds dept'))

['c', 's', ' ', 'n', 'd', ' ', 'd', 's', ' ', 'd', 'p', 't']

 [1234] Matches with any of the specified digit

>>> print(re.findall(r'[12345]','cse-1 cse-2 cse-3 cse-4 ds'))

['1', '2', '3', '4']

V RajaSekhar CSE Dept 8

 [a-zA-Z] Matches with any alphabet, lower or UPPER

>>> print(re.findall(r'[a-zA-Z]','This is Cse and Ds Dept'))

['T', 'h', 'i', 's', 'i', 's', 'C', 's', 'e', 'a', 'n', 'd', 'D', 's', 'D', 'e', 'p', 't']

REs and Python

Built-in methods of re module
The re module provides the following methods to work with regular expressions.

1. match()

2. search()

3. findall()

4. finditer()

5. sub()

6. split()

7. compile()

1. match() in Python:
 We can use match function to check the given pattern at beginning of target string.

If the match is available then we will get Match object, otherwise we will get None.

 The re.match() method will start matching a regex pattern from the very first

character of the text, and if the match found, it will return a re.Match object. Later

we can use the re.Match object to extract the matching string.

Syntax of re.match(): re.match(pattern, string, flags=0)

 The regular expression pattern and target string are the mandatory arguments, and

flags are optional.

 pattern: The regular expression pattern we want to match at the beginning of the

target string. Since we are not defining and compiling this pattern beforehand (like

the compile method). The practice is to write the actual pattern using a raw string.

 string: The second argument is the variable pointing to the target string (In which we

want to look for occurrences of the pattern).

 flags: Finally, the third argument is optional and it refers to regex flags by default no

flags are applied.

Eg:

>>> str='This is MREC'

>>> print(re.match(r'\w{4}',str))

<re.Match object; span=(0, 4), match='This'>

 This re.Match object contains the following items.

V RajaSekhar CSE Dept 9

 A span attribute that shows the locations at which the match starts and ends. i.e., is

the tuple object contains the start and end index of a successful match.Save this tuple

and use it whenever you want to retrieve a matching string from the target string

 Second, A match attribute contains an actual match value that we can retrieve using

a group() method.

 The Match object has several methods and attributes to get the information about the

matching string. Let’s see those.

Method Description

group() Return the string matched by the regex

start() Return the starting position of the match

end() Return the ending position of the match

span() Return a tuple containing the (start, end) positions of the match.

>>> res=re.match(r'\w{4}',str)

>>> res

<re.Match object; span=(0, 4), match='This'>

>>> res.group()

'This'

>>> res.start()

0

>>> res.end()

4

>>> res.span()

(0, 4)

search() in Python:
 Python regex re.search() method looks for occurrences of the regex pattern inside the

entire target string and returns the corresponding Match Object instance where the

match found.

 Syntax:re.search(pattern, string, flags=0)

>>> import re

>>> print(re.search('cse','cse and ds depts in MREC'))

<re.Match object; span=(0, 3), match='cse'>

>>> print(re.search('ds','cse and ds depts in MREC'))

<re.Match object; span=(8, 10), match='ds'>

V RajaSekhar CSE Dept 10

findall() in Python:
 The RE module’s re.findall() method scans the regex pattern through the entire target

string and returns all the matches that were found in the form of a Python list.

 Syntax:re.findall(pattern, string, flags=0)

>>> print(re.findall('abc','abc abcde bchkdhk abc'))

['abc', 'abc', 'abc']

>>> print(re.findall('cse','cse-A cse-B cse-C cse-D'))

['cse', 'cse', 'cse', 'cse']

>>> print(re.findall('ds','This is ds dept'))

['ds']

finditer() in python:
 The re.finditer() works exactly the same as the re.findall() method except it returns

an iterator yielding match objects matching the regex pattern in a string instead of a

list. It scans the string from left-to-right, and matches are returned in the iterator

form. Later, we can use this iterator object to extract all matches.

 In simple words, finditer() returns an iterator over MatchObject objects.

import re

res=re.finditer(r'\b\w{3}\b','cse ds raj')

for match in res:

 print(match.group())

print(re.findall(r'\b\w{3}\b','cse ds raj'))

outPut:

cse

raj

['cse', 'raj']

sub() in Python:
 The sub() method of re object replaces the match pattern with specified text in a

string.

 The syntax of sub() method is sub(pattern, text, string).

 The sub() method does not modify the actual string instead, it returns the modified

string as a new string.

>>> print(re.sub('depts','DEPTS','cse and ds depts'))

>>>cse and ds DEPTS

>>> id='rajasekhar.v86@gmail.com'

>>> print(re.sub('.com','.in',id))

rajasekhar.v86@gmail.in

split() in Python
 The Pythons re module’s re.split() method split the string by the occurrences of the

regex pattern, returning a list containing the resulting substrings.

V RajaSekhar CSE Dept 11

 Syntax:re.split(pattern, string, maxsplit=0, flags=0)

 The regular expression pattern and target string are the mandatory arguments. The

maxsplit, and flags are optional.

 pattern: the regular expression pattern used for splitting the target string.

 string: The variable pointing to the target string (i.e., the string we want to split).

 maxsplit: The number of splits you wanted to perform. If maxsplit is nonzero, at

most maxsplit splits occur, and the remainder of the string is returned as the final

element of the list.

 flags: By default, no flags are applied.

 print(re.split('\.','http://www.google.com/'))

['http://www', 'google', 'com/']

str=" cse and ds depts in mrec'

print(re.split(r'\s+',str))

['cse', 'and', 'ds', 'depts', 'in', 'mrec']

str='123-45-678-9'

print(re.split(r'\D',str,maxsplit=1))

['123', '45-678-9']

compile() in python:
 Python’s re.compile() method is used to compile a regular expression pattern

provided as a string into a regex pattern object (re.Pattern).

 Later we can use this pattern object to search for a match inside different target

strings using regex methods such as a re.match() or re.search().

 In simple terms, We can compile a regular expression into a regex object to look for

occurrences of the same pattern inside various target strings without rewriting it.

Syntax of re.compile()

 re.compile(pattern, flags=0)

 pattern: regex pattern in string format, which you are trying to match inside the

target string.

 flags: The expression’s behavior can be modified by specifying regex flag values.

This is an optional parameter

>>> pattern=re.compile(r'\b\w{4}\b')

>>> result=patten.findall('abcd raaj')

>>> result=pattern.findall('abcd raaj')

>>> result

['abcd', 'raaj']

>>> print(re.findall(pattern,'abcd raaj'))

['abcd', 'raaj']

>>>

V RajaSekhar CSE Dept 12

Examples

Example 1: Write a regular expression to search digit inside a string

import re

str="The total no of students are120"

res=re.findall(r'\d',str)

print(res)

output:

['1', '2', '0']

Example2: match 3-letter word anywhere in the string

str='MREC civil cse eee ece ds iot ai&ml cs mech'

 print(re.findall(r'\w{3}',str))

['MRE', 'civ', 'cse', 'eee', 'ece', 'iot', 'mec']

Example 3 : Extract all characters from the paragraph using Python Regular Expression.

import re

str="The total no of students are120"

print(re.findall(r'.',str))

['T', 'h', 'e', ' ', 't', 'o', 't', 'a', 'l', ' ', 'n', 'o', ' ', 'o', 'f', ' ', 's', 't', 'u', 'd', 'e', 'n', 't', 's', '

', 'a', 'r', 'e', '1', '2', '0']

Example 4: Extract all of the words and numbers

import re

str="The total no of students are120"

print(re.findall(r'\w+',str))

['The', 'total', 'no', 'of', 'students', 'are120']

Example 5: Extract only numbers

import re

str="The total no of students are120"

print(re.findall(r'\d+',str))

['120']

Example 6: Extract the beginning word

import re

V RajaSekhar CSE Dept 13

str="The total no of students are120"

print(re.findall(r'^\w+',str))

['The']

Example 7: Extract first two characters from each word (not the numbers)

import re

str="The total no of students are120"

print(re.findall(r'\b[a-zA-Z].',str))

['Th', 'to', 'no', 'of', 'st', 'ar']

Example 8: Find out all of the words, which start with a vowel.

import re

str="The total no of students are120"

print(re.findall(r'\b[aeiou]\w+',str))

['of', 'are120']

Example 9:Extract date from the string

import re

str='Today date is June 09, 2021.'

pattern=r'(\w+)(\s)(\d+)([,]\s)(\d+)'

print(re.findall(pattern,str))

[('June', ' ', '09', ', ', '2021')]

import re

str='Today date is 06-09-2021'

pattern=r'(\d+)(.)(\d+)(.)(\d+)'

print(re.findall(pattern,str))

[('06', '-', '09', '-', '2021')]

import re

str='Today date is 06-09-2021'

match=re.search(r'\d{2}-\d{2}-\d{4}',str)

V RajaSekhar CSE Dept 14

print(match.group())

06-09-2021

Example 10:Extract date from the string

import re

str = "Please contact us at rajasekhar.v86@gmail.com for further

information."

email = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", str)

print(email)

['rajasekhar.v86@gmail.com']

Example 11:Write a Python program that matches a string that has an a followed by zero

or more b's.

import re

def match(str):

 pattern = 'ab*?'

 if re.search(pattern,str):

 return 'Found a match!'

 else:

 return('Not matched!')

print(match("ac"))

print(match("abc"))

print(match("abbc"))

print(match("abbbc"))

print(match("$12"))

Found a match!

Found a match!

Found a match!

Found a match!

Not matched!

Example 12:Replace maximum 2 occurrences of space, comma, or dot with a colon

import re

text = 'CSE DS, MREC .'

print(re.sub("[,.]", ":", text, 2))

V RajaSekhar CSE Dept 15

CSE:DS: MREC .

Example 13:Develop a Python program to match a string that contains only upper and

lowercase letters, numbers, and underscores.

import re

str = 'Raj_1254'

pattern='^[a-zA-Z0-9_]*$'

print(re.findall(pattern,str))

['Raj_1254']

