
V RajaSekhar CSE Dept 1

Python Programming

MODULE - II

Agenda:

 Modules: Modules and Files

 Namespaces

 Importing Modules,

 Importing Module Attributes,

 Module Built-in Functions,

 Packages,

 Other Features of Modules

 Files: File Objects,

 File Built-in Function,

 File Built-in Methods,

 File Built-in Attributes,

 Standard Files,

 Command-line Arguments,

 File System,

 File Execution,

 Persistent Storage Modules.

 Exceptions: Exceptions in Python,

 Detecting and Handling Exceptions,

 Context Management,

 Exceptions as Strings,

 Raising Exceptions,

 Assertions,

 Standard Exceptions,

 Creating Exceptions,

 Why Exceptions,

 Why Exceptions at All?

 Exceptions and the sys Module.

V RajaSekhar CSE Dept 2

Modules

 Like many other programming languages, Python supports modularity. That is, you

can break large code into smaller and more manageable pieces. And through

modularity, Python supports code reuse.

 We can import modules in Python into your programs and reuse the code therein as

many times as you want.

 Modules provide us with a way to share reusable functions.

A module is simply a “Python file” which contains code we can reuse in

multiple Python programs. A module may contain functions, classes,

lists, etc.

 Modules in Python can be of two types:

1. Built-in Modules.

2. User-defined Modules.

1. Built in Modules in Python

 One of the many superpowers of Python is that it comes with a ―rich standard

library‖. This rich standard library contains lots of built-in modules. Hence, it

provides a lot of reusable code.

 In Python, modules are accessed by using the import statement

 When our current file is needed to use the code which is already existed in other files

then we can import that file (module).

 When Python imports a module called module1 for example, the interpreter will first

search for a built-in module called module1. If a built-in module is not found, the

Python interpreter will then search for a file named module1.py in a list of directories

that it receives from the sys.path variable.

 We can import module in three different ways:

1. import <module_name>

2. from <module_name> import <method_name>

3. from <module_name> import *

1.import <module_name>:

 This way of importing module will import all methods which are in that specified

module.

Eg: import math

 Here this import statement will import all methods which are available in math

module. We may use all methods or may use required methods as per business

requirement.

V RajaSekhar CSE Dept 3

2.From <module_name> import <method_name>:

 This import statement will import a particular method from that module which is

specified in the import statement.

 We can‘t use other methods which are available in that module as we specified

particular method name in the import statement.

 The main advantage of this is we can access members directly without using module

name.

Eg:from <module_name>import <*>

from math import factorial

from math import*

Finding members of module by using dir() function:
 Python provides inbuilt function dir() to list out all members of current module or a

Specified module.

 dir() ===>To list out all members of current module

 dir(moduleName)==>To list out all members of specified module

1.Eg:

>>> dir()

['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__',

'__spec__']

2.Eg:

>>> import math

>>> dir(math)

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin',

'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist',

'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',

'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma',

'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod',

'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', 'ulp']

Some of Standard modules

 Math module

 Calendar module

V RajaSekhar CSE Dept 4

Working with math module:
 Python provides inbuilt module math.

 This module defines several functions which can be used for mathematical

operations.

 Some main important functions are

1. sqrt(x)

2. ceil(x)

3. floor(x)

4. fabs(x)

5. log(x)

6. sin(x)

7. tan(x)

8.factorial(x)

....

Eg:

>>> from math import*

>>> print(sqrt(5))

2.23606797749979

>>> print(ceil(15.25))

16

>>> print(floor(15.25))

15

>>> print(fabs(-15.6))

15.6

>>> print(fabs(15.6))

15.6

>>> print(log(10.5))

2.3513752571634776

>>> print(sin(1))

0.8414709848078965

>>> print(tan(0))

0.0

>>> print(factorial(5))

120

Working with Calendar module:
 Python defines an inbuilt module calendar which handles operations related to

calendar.

V RajaSekhar CSE Dept 5

 Calendar module allows output calendars like the program and provides additional

useful functions related to the calendar.

calendar.day_name:An array that represents the days of the week in the current locale.

1. Displaying all week names one by one

import calendar

for i in calendar.day_name:

 print(i)

output:

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

calendar.month_name:

An array that represents the months of the year in the current locale. This follows normal

convention of January being month number 1, so it has a length of 13 and month_name[0]

is the empty string.

>>> import calendar

>>> for i in calendar.month_name:

 print(i)

January

February

March

April

May

June

July

August

September

October

November

December

calendar.monthrange(year, month): Returns weekday of first day of the month and

number of days in month, for the specified year and month.

>>> import calendar

>>> print(calendar.monthrange(2021,6))

V RajaSekhar CSE Dept 6

(1, 30)

>>> print(calendar.monthrange(2021,7))

(3, 31)

>>> print(calendar.monthrange(2022,1))

(5, 31)

>>> print(calendar.monthrange(2021,1))

(4, 31)

calendar.isleap(year): Returns True if year is a leap year, otherwise False.

>>> import calendar

>>> print(calendar.isleap(2020))

True

>>> print(calendar.isleap(2021))

False

calendar.leapdays(y1, y2): Returns the number of leap years in the range from y1 to y2

(exclusive), where y1 and y2 are years.

>>> import calendar

>>> print(calendar.leapdays(2000,2020))

5

calendar.weekday(year, month, day): Returns the day of the week (0 is Monday) for year

(1970–…), month (1–12), day (1–31)

>>> import calendar

>>> print(calendar.weekday(2020,5,1))

4

>>> print(calendar.weekday(2021,5,1))

5

calendar.weekheader(n): Return a header containing abbreviated weekday names. n

specifies the width in characters for one weekday

>>> import calendar

>>> print(calendar.weekheader(1))

M T W T F S S

>>> print(calendar.weekheader(3))

Mon Tue Wed Thu Fri Sat Sun

>>> print(calendar.weekheader(10))

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

calendar. calendar(year, w, l, c):Returns a 3-column calendar for an entire year as a multi-

line string using the formatyear() of the TextCalendar class.

This function shows the year, width of characters, no. of lines per week and column

separations.

V RajaSekhar CSE Dept 7

>>> import calendar

>>> print(calendar.calendar(2021))

Output:prints 2021 full calendar

1. User defined Modules.

 Another superpower of Python is that it lets you take things in your own hands.

 A python module can be defined as a python program file which contains a python

code including python functions, class, or variables. In other words, we can say that

our python code file saved with the extension (.py) is treated as the module. We may

have a runnable code inside the python module.

 Modules in Python provides us the flexibility to organize the code in a logical way.

 To use the functionality of one module into another, we must have to import the

specific module.

Creating a Module:

Shown below is a Python script containing the definition of sum() function. It is

saved as calc.py.

#calc.py

def sum(x, y):

 return x + y

def sub(x, y):

 return x - y

def mul(x, y):

 return x * y

def di(x, y):

 return x / y

Importing a Module

We can now import this module and execute the any functions which are there in calac.py

module in the Python shell.

>>> import calc

>>> print(calc.sum(4,5))

9

>>> print(calc.sub(4,5))

-1

>>> print(calc.mul(4,5))

20

V RajaSekhar CSE Dept 8

>>> from calc import *

>>> print(sum(4,5))

9

>>> print(sub(4,5))

-1

>>> print(mul(4,5))

20

 Every module, either built-in or custom made, is an object of a module class.

Verify the type of different modules using the built-in type() function, as shown

below.

>>> import calc

>>> type(calc)

<class 'module'>

>>> import math

>>> type(math)

<class 'module'>

Renaming the Imported Module

Use the as keyword to rename the imported module as shown below.-

>>> import calc as c

>>> import math as raj

>>> import calc as c

>>> import math as raj

>>> print(c.sum(4,5))

9

>>> print(raj.factorial(5))

120

Namespaces

 Generally speaking, a namespace is a naming system for making names unique to

avoid ambiguity.

 Everybody knows a namespacing system from daily life, i.e. the naming of people in

firstname and familiy name (surname).

 A namespace is a simple system to control the names in a program. It ensures that

names are unique and won‘t lead to any conflict.

 Some namespaces in Python:

1. Local Namespace

2. Global Namespace

V RajaSekhar CSE Dept 9

3. Built-in Namespace

Local Namespace:
The Variables which are defined in the function are a local scope of the variable. These

variables are defined in the function body.

Global Namespace
The Variable which can be read from anywhere in the program is known as a global scope.

These variables can be accessed inside and outside the function. When we want to use the

same variable in the rest of the program, we declare it as global.

Eg:

n=0#global namesapce

def f1():

 n=1#local namespace

 print("local variable n=",n)

f1()

print("Global variable n=",n)

OutPut:

 local variable n= 1

Global variable n= 0

Built-in Scope
 If a Variable is not defined in local,or global scope, then python looks for it in the

built-in scope.

 In the Following Example, 1 from math module pi is imported, and the value of pi

is not defined in global, local and enclosed.

 Python then looks for the pi value in the built-in scope and prints the value. Hence

the name which is already present in the built-in scope should not be used as an

identifier.

Eg:

Built-in Scope

from math import pi

pi = 'Not defined in

global pi'

def f1():

 print('Not defined in f1()

pi')

def f2():

 print('Not defined in f2()

pi')

f1()

f2()

print('pi is Built-in

scope',pi)

OutPut:

Not defined in f1() pi

Not defined in f2() pi

pi is Built-in scope

3.141592653589793

V RajaSekhar CSE Dept 10

Packages in Python

 A Package is nothing but a collection of modules. It is also imported into programs.

 In Package, several modules are present, which you can import in your code.

 Packages are a way of structuring many packages and modules which helps in a well-

organized hierarchy of data set, making the directories and modules easy to access.

 Just like there are different drives and folders in an OS to help us store files, similarly

packages help us in storing other sub-packages and modules, so that it can be used by

the user when necessary.

 Similarly, as a directory can contain subdirectories and files, a Python package can

have sub-packages and modules.

 A directory must contain a file named __init__.py in order for Python to consider it

as a package. This file can be left empty but we generally place the initialization code

for that package in this file.

 Any folder or directory contains __init__.py file,is considered as a Python

package.This file can be empty.

 As we discussed, a package may hold other Python packages and modules. But what

distinguishes a package from a regular directory? Well, a Python package must have

an __init__.py file in the directory.

 You may leave it empty, or you may store initialization code in it. But if your

directory does not have an __init__.py file, it isn‘t a package; it is just a directory

with a bunch of Python scripts. Leaving __init__.py empty is indeed good practice.

Example: Suppose we are developing a game. One possible organization of packages and

modules could be as shown in the figure below.

V RajaSekhar CSE Dept 11

The Following Steps to be follow.

Step1: Create a folder or package

Step2: Inside the Folder create a sub folder or package

Step3: Inside the package we have to create _init_.py which indicate its a package

Step4: After that we can create some modules based on requirement

Step5: After that we have to create main module in package folder by importing the created

modules in sub package.

Eg 1:

F:\>

 |-test.py

 |-python_package

 |-First.py

 |-Second.py

 |-__init__.py

test.py

from python_package import First,second

First.f1()

second.f2()

First.py

def f1():

 print("This is First function")

V RajaSekhar CSE Dept 12

Second.py

def f2():

 print("This is Second Function")

OutPut:

This is First function

This is Second Function

Files Handling in Python

 Python File Handling Before we move into the topic ―Python File Handling‖, let us

try to understand why we need files?

 So far, we have been receiving the input data from the console and writing the output

data back to the console.

 The console only displays a limited amount of data. Hence we don‘t have any issues

if the input or output is small. What if the output or input is too large?

 We use files when we have large data as input or output.

 A file is nothing but a named location on disk which stores data.

 Files are also used to store data permanently since it stores data on non-volatile

memory.

 Most modern file systems are composed of three main parts:

1. Header: metadata about the contents of the file (file name, size, type, and

so on)

2. Data: contents of the file as written by the creator or editor

3. End of file (EOF): special character that indicates the end of the file

Types of Files in Python
 Text File

 Binary File

1. Text File
 Text file store the data in the form of characters.

 Text file are used to store characters or strings.

 Usually we can use text files to store character data

eg: abc.txt

2. Binary File
 Binary file store entire data in the form of bytes.

 Binary file can be used to store text, image, audio and video.

V RajaSekhar CSE Dept 13

 Usually we can use binary files to store binary data like images,video files, audio files

etc.

File operation on Text Files:
In Python, we can perform the following file operations:

 Open a file

 Read or write a file
 Close a file

Opening a File:
 Before performing any operations like read or write on a file, the first thing we need

to do is open a file.

 Python provides an in-built function open() to open a file.
 The open function accepts two parameters: the name of the file and the access mode.

 The access mode specifies what operation we are going to perform on a file whether
it is read or write.

 The open() function in turn returns a file object/handle, with which we can perform
file operations based on the access mode.

Syntax: file_object=open(filename, access_mode)
 The allowed modes in Python are

 r : open an existing file for read operation. The file pointer is positioned at the

beginning of the file. If the specified file does not exist then we will get
FileNotFoundError. This is default mode.

 w : open an existing file for write operation. If the file already contains some data
then it will be overridden. If the specified file is not already available then this mode

will create that file.

 a : open an existing file for append operation. It won't override existing data. If the
specified file is not already available then this mode will create a new file.

 r+ : To read and write data into the file. The previous data in the file will not be
deleted. The file pointer is placed at the beginning of the file.

 w+ : To write and read data. It will override existing data.

 a+ : To append and read data from the file.It wont override existing data.

 x : To open a file in exclusive creation mode for write operation. If the file already
exists then we will get FileExistsError.

 All the above modes are applicable for text files. If the above modes suffixed with
'b' then these represents for binary files.

 rb,wb,ab,r+b,w+b,a+b,xb

V RajaSekhar CSE Dept 14

Ex:

1. file_object=open("test.txt") # when file is in the current directory

2. file_object=open("C:/User/Desktop/test.txt") # specify full path when file is in

different directory

Closing a File:
After completing our operations on the file,it is highly recommended to close the file. For
this we have to use close() function. f.close()

Writing data to text files:
We can write character data to the text files by using the following 2 methods.

 write(str)

 writelines(list of lines)

Eg:1

1) f=open("abcd.txt",'w')

2) f.write("MREC \n")

3) f.write("CSE \n")

4) f.write("DS\n")

5)f.write("Dept\")

6) f.close()

abcd.txt:

MREC

CSE

DS

DEPT

Eg 2:

1) f=open("abcd.txt",'a')

2) list=["\nAI&ML\n","IOT\n","RAJ"]

3) f.writelines(list)

4) f.close()

abcd.txt:

MREC

CSE

DS

DEPT

AI&ML

IOT

RAJ

Reading Character Data from text files:
 We can read character data from text file by using the following read methods.

read() To read total data from the file

read(n)  To read 'n' characters from the file

readline()To read only one line

readlines() To read all lines into a list

V RajaSekhar CSE Dept 15

Eg 1: To read total data from the file

 f=open("abc.txt",'r')

 data=f.read()

 print(data)

 f.close()

 Output

MREC

CSE

DS

DEPT

AI&ML

IOT

RAJ

Eg 2: To read only first 10 characters:

 f=open("abc.txt",'r')

 data=f.read(10)

 print(data)

 f.close()

Output

MREC

CSE

DS
Eg 3: To read data line by line:

f=open("abc.txt",'r')

line1=f.readline()

print(line1,end='')

line2=f.readline()

print(line2,end='')

line3=f.readline()

print(line3,end='')

f.close()

Output

MREC

 CSE

 DS
Eg 4: To read all lines into list:

f=open("abc.txt",'r')

lines=f.readlines()

for line in lines:

print(line,end='')

f.close()

V RajaSekhar CSE Dept 16

Output

MREC

CSE

DS

DEPTS

AI&ML

IOT

RAJ

The seek() and tell() methods:
tell():

 We can use tell() method to return current position of the cursor(file pointer) from
beginning of the file.

 The position(index) of first character in files is zero just like string index.

Eg:

f=open('F:/abcd.txt','r')

print(f.tell())

print(f.read(2))

print(f.tell())

print(f.read(2))

f.close()

Output:

0

MR

2

EC

seek():
 We can use seek() method to move cursor(file pointer) to specified location.

 Syntax:f.seek(offset)

Eg:

f=open('F:/abcd.txt','r')

print(f.tell())

print(f.read(2))

print(f.tell())

print(f.read(2))

f.seek(0)

print(f.read(4))

f.seek(4)

print(f.read())

f.close()

output: 0

MR

2

EC

MREC

V RajaSekhar CSE Dept 17

File Built in Attributes and Built in Methods
 Once we opened a file and we got file object, we can get various details related to

that file by using its properties or attributes and methods on it.
 The Following are some of the attributes.

 name --> Name of opened file

 mode -->Mode in which the file is opened

 closed -->Returns boolean value indicates that file is closed or not

Eg:

>>>

f=open("C:/Users/rajas/AppData/Local/Programs/Python/Python39/m2.py",'r')

>>> f.name

'C:/Users/rajas/AppData/Local/Programs/Python/Python39/m2.py'

>>> f.mode

'r'
>>> f.closed

False

File Built in Methods

Python has the following set of methods available for the file object.

Method Description

close() Closes the file

fileno() Returns a number that represents the stream, from the operating system's perspective

flush() Flushes the internal buffer

isatty() Returns whether the file stream is interactive or not

read() Returns the file content

readable() Returns whether the file stream can be read or not

readline() Returns one line from the file

readlines() Returns a list of lines from the file

seek() Change the file position

seekable() Returns whether the file allows us to change the file position

tell() Returns the current file position

truncate() Resizes the file to a specified size

writable() Returns whether the file can be written to or not

write() Writes the specified string to the file

writelines() Writes a list of strings to the file

https://www.w3schools.com/python/ref_file_close.asp
https://www.w3schools.com/python/ref_file_fileno.asp
https://www.w3schools.com/python/ref_file_flush.asp
https://www.w3schools.com/python/ref_file_isatty.asp
https://www.w3schools.com/python/ref_file_read.asp
https://www.w3schools.com/python/ref_file_readable.asp
https://www.w3schools.com/python/ref_file_readline.asp
https://www.w3schools.com/python/ref_file_readlines.asp
https://www.w3schools.com/python/ref_file_seek.asp
https://www.w3schools.com/python/ref_file_seekable.asp
https://www.w3schools.com/python/ref_file_tell.asp
https://www.w3schools.com/python/ref_file_truncate.asp
https://www.w3schools.com/python/ref_file_writable.asp
https://www.w3schools.com/python/ref_file_write.asp
https://www.w3schools.com/python/ref_file_writelines.asp

V RajaSekhar CSE Dept 18

File close() Method
 Close a file after it has been opened:

f = open("raj.txt", "r")

print(f.read())

f.close()

File fileno() Method
 Return the file descriptor of the stream:

f = open("raj.txt", "r")

print(f.fileno())

File flush() Method
 The flush() method cleans out the internal buffer.
 You can clear the buffer when writing to a file:

f = open("myfile.txt", "a")

f.write("Now the file has one more line!")

f.flush()

f.write("...and another one!")

File isatty() Method

 The isatty() method returns True if the file stream is interactive, example: connected

to a terminal device.

f = open("raj.txt", "r")

print(f.isatty())

File read() Method

 The read() method returns the specified number of bytes from the file. Default is -1
which means the whole file.

f = open("raj.txt", "r")

print(f.read())

File readable() Method

 The readable() method returns True if the file is readable, False if not.

f = open("raj.txt", "r")

print(f.readable())

V RajaSekhar CSE Dept 19

File readline() Method

 The readline() method returns one line from the file.
 You can also specified how many bytes from the line to return, by using the size

parameter.

f = open("demofile.txt", "r")

print(f.readline())

File readlines() Method
 The readlines() method returns a list containing each line in the file as a list item.

f = open("raj.txt", "r")

print(f.readlines())

f = open("raj.txt", "r")

print(f.readline())

File seek() Method
 The seek() method sets the current file position in a file stream.
 The seek() method also returns the new postion.

f = open("raj.txt", "r")

f.seek(4)

print(f.readline())

File seekable() Method
 The seekable() method returns True if the file is seekable, False if not.
 A file is seekable if it allows access to the file stream, like the seek() method.

f = open("raj.txt", "r")

print(f.seekable())

File tell() Method
 The tell() method returns the current file position in a file stream.

f = open("raj.txt", "r")

print(f.tell())

File truncate() Method
 The truncate() method resizes the file to the given number of bytes.
 If the size is not specified, the current position will be used.

f = open("demofile2.txt", "a")

f.truncate(20)

f.close()

V RajaSekhar CSE Dept 20

#open and read the file after the truncate:

f = open("demofile2.txt", "r")

print(f.read())

File writable() Method
 The writable() method returns True if the file is writable, False if not.
 A file is writable if it is opened using "a" for append or "w" for write.

f = open("raj.txt", "a")

print(f.writable())

 File write() Method
 The write() method writes a specified text to the file.
 Where the specified text will be inserted depends on the file mode and stream

position.
 "a": The text will be inserted at the current file stream position, default at the end of

the file.
 "w": The file will be emptied before the text will be inserted at the current file stream

position, default 0.

f = open("demofile2.txt", "a")

f.write("See you soon!")

f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r")

print(f.read())

File writelines() Method
 The writelines() method writes the items of a list to the file.

 Where the texts will be inserted depends on the file mode and stream position.
 "a": The texts will be inserted at the current file stream position, default at the end of

the file.
 "w": The file will be emptied before the texts will be inserted at the current file stream

position, default 0.

f = open("raj.txt", "a")

f.writelines(["See you soon!", "Over and out."])

f.close()

#open and read the file after the appending:

f = open("raj.txt", "r")

print(f.read())

V RajaSekhar CSE Dept 21

File operation on Binary Files:
 Binary file store entire data in the form of bytes.

 Binary file can be used to store text, image, audio and video.

 Usually we can use binary files to store binary data like images,video files, audio files

etc.

 In Python, we can perform the following file operations:

 Open a file

 Read or write a file
 Close a file

Eg: program to Read an image and that to another.

f1=open('mrec.jpg','rb')

f2=open('mrec1.jpg','wb')

#bytes=f1.read()

f2.write(f1.read())

print("Image copied from f1 to f2:\n")

f1.close()

f2.close()

File System in python
 A file system is a process that manages how and where data on storage disk, typically

a hard disk drive (HDD), is stored, accessed and managed. It is a logical disk
component that manages a disk's internal operations as it relates to a computer and is

abstract to a human user.
 A directory simply is a structured list of documents and folders. A directory can have

sub-directories and files. When we have too many files, Python directory comes in

handy in file management or system with directories and sub-directories.
 Python has os module with multiple methods defined inside for directory and file

management or system

Working with Directories:
It is very common requirement to perform operations for directories like

To Know Current Working Directory:

import os

print("The cwd=",os.getcwd())

OutPut:
The cwd= C:\Users\rajas\AppData\Local\Programs\Python\Python39

To create a sub directory in the current working directory:

import os

V RajaSekhar CSE Dept 22

os.mkdir('Raj')

print("The Directory Raj is Created”)

OutPut:
 The Directory Raj is Created

To rename a directory in Python:
 Python has rename() function to rename a directory.

Syntax: os.rename(old_name,new_name)

import os

os.rename('Raj','mrec')

print("The Directory Raj Renamed to mrec")

OutPut:
The Directory Raj Renamed to mrec

To change directories in Python:

 In Python, chdir() function defined in module os is used to change the working
directories.

Example:Suppose we want to change our working directory to Raj in F: Here is how it is
done.

>>> import os

>>> os.getcwd()

'C:\\Users\\rajas\\AppData\\Local\\Programs\\Python\\Python39'

>>> os.chdir('F:/')

>>> os.getcwd()

'F:\\'

>>> os.mkdir('Raj')

>>> os.getcwd()

'F:\\'

>>> os.chdir('Raj')

>>> os.getcwd()

'F:\\Raj'

To list directories in Python:
 Python has listdir() function in module os to list all the directories and files in a

particular location.
 listdir() returns a list containing the names of the entries in the directory given by

path. The list is in arbitrary order, and does not include the special entries '.' and '..'
even if they are present in the directory.

Here is an example:

>>> import os

V RajaSekhar CSE Dept 23

>>> os.chdir('F:/')

>>> os.listdir()

['$RECYCLE.BIN', 'abcd.txt', 'add.txt', 'Applicant Details-Cloud.doc', 'c.py', 'cal.csv',

'certifiates', 'copy.txt', 'cse1.txt', 'DCIM', 'Download', 'ds.py', 'ds1.py', 'ds2.txt',

'eee.txt', 'exp2.py', 'filedemo.c', 'filedemo.exe', 'filedemo.o', 'first.py', 'first.txt',

'fwdresearchmethodologynotes.zip', 'Game', 'hello.txt', 'JAVA PROGRAMMING',

'm.c', 'm.exe', 'm.o', 'Machine Learning', 'MarriagePhotos', 'merge.c', 'merge.exe',

'merge.o', 'Meterials', 'Microsoft Office Enterprise 2010 Corporate Final (full

activated)', 'ML', 'myfile.txt', 'myfile1.txt', 'new.csv', 'new.py', 'new.txt', 'old',

'package', 'Packages', 'python', 'r.py', 'R20-python', 'Raj', 'raj.bin', 'raj.txt']

To remove a directory:
 To remove or delete a directory path in Python, rmdir() is used which is defined in

os module.
 rmdir() works only when the directory we want to delete is empty, else it raises an

OS error.
 So here are the ways to remove or delete empty and non-empty directory paths.

>> import os

>>> os.chdir('F:/Raj')

>>> os.mkdir('cse')

>>> os.listdir()

['cse']

>>> os.rmdir('cse')

To remove multiple directories in the path:

>>> import os

>>> os.chdir('F:/')

>>> os.removedirs('Raj/A')

Check if Given Path is File or Directory
 To check if the path you have is a file or directory, import os module and use isfile()

method to check if it is a file, and isdir() method to check if it is a directory.

>>> import os

>>> os.chdir('F:/')

>>> os.listdir()

['$RECYCLE.BIN', 'abcd.txt', 'add.txt', 'Applicant Details-Cloud.doc', 'c.py',

'cal.csv', 'exp2.py', 'filedemo.c', 'filedemo.exe', 'filedemo.o', 'first.py', 'first.txt',

'Raj']

>>> os.path.isfile('add.txt')

True

>>> os.path.isdir('Raj')

True

V RajaSekhar CSE Dept 24

Persistent Storage Modules
 The word ‗persistence‘ means "the continuance of an effect after its cause is

removed".
 The term data persistence means it continues to exist even after the application has

ended. Thus, data stored in a non-volatile storage medium such as, a disk file is
persistent data storage.

 Data Persistence is the concept of storing data in a persistent form.

 It means that the data should be permanently stored on disk for further
manipulation.

 There are two types of system used for data persistence they are

 There are two aspects to preserving data for long-term use: converting the data back

and forth between the object in-memory and the storage format, and working with

the storage of the converted data.
 The standard library includes a variety of modules that handle both aspects in

different situations.

Serialization:
Serialization in Python is a mechanism of translating data structures or object state into

a format that can be stored or transmitted and reconstructed later.

De-serialization:
The reverse operation of serialization is called de-serialization

 The type of manual conversion, of an object to string or byte format (and vice versa)

is very cumbersome and tedious. It is possible to store the state of a Python object in
the form of byte stream directly to a file, or memory stream and retrieve to its

original state. This process is called serialization and de-serialization.
 Python‘s built in library contains various modules for serialization and de-

serialization process. They are as follows.

S.No.
Name of the

Module
Description

1 pickle Python specific serialization library

2 marshal Library used internally for serialization

3 shelve Pythonic object persistence

4 csv library for storage and retrieval of Python data to CSV format

5 json Library for serialization to universal JSON format

V RajaSekhar CSE Dept 25

Eg: Writing data to binary file without pickle module.

f=open('bin.bin','wb')

num=[10,20,30,40,50]

arr=bytearray(num)

f.write(arr)

f.close()

f=open('bin.bin','rb')

num=list(f.read())

print(num)

f.close()

OutPut:

[10,20,30,40,50]

 The problem with above program is the binary file requires bytes object only for that

we have convert to bytes object only.
 To provide solution for this we have use any above modules

Pickle Module

 Pickling is the process whereby a python object is converted into byte stream.
 Unpickling is the reverse of this whereby a byte stream is converted back into an

object.
 We can implement pickling and unpickling by using pickle module of Python.
 pickle module contains dump() function to perform pickling.

 Syntax:pickle.dump(object,file)
 pickle module contains load() function to perform unpickling

 Syntax:obj=pickle.load(file)

Eg:

import pickle

dict={1:"cse",2:"ds"}

f=open('bin.bin','wb')

pickle.dump(dict,f)

f.close()

f=open('bin.bin','rb')

s=pickle.load(f)

print(s)

f.close()

OutPut:

 {1: 'cse', 2: 'ds'}

marshal Module
 The marshal module is used to serialize data—that is, convert data to and from

character strings, so that they can be stored on file.

V RajaSekhar CSE Dept 26

 The marshal module uses a simple self-describing data format. For each data item,
the marshalled string contains a type code, followed by one or more type-specific

fields. Integers are stored in little-endian order, strings are stored as length fields
followed by the strings‘ contents (which can include null bytes), tuples are stored as

length fields followed by the objects that make up each tuple, etc.
 Just as pickle module, marshal module also defined load() and dump() functions for

reading and writing marshalled objects from / to file.

marshal.dump(value, file[, version]) :
This function is used to write the supported type value on the open writeable binary file. A
ValueError exception is raised if the value has an unsupported type.

marshal.load(file) :
This function reads one value from the open readable binary file and returns it. EOF Error,
ValueError or TypeError is raised if no value is read.

Example:

import marshal

dict={1:"cse",2:"ds"}

f=open('bin.bin','wb')

marshal.dump(dict,f)

f.close()

f=open('bin.bin','rb')

s=marshal.load(f)

print(s)

f.close()

OutPut:

 {1: 'cse', 2: 'ds'}

Command-line Arguments

 There are many different ways in which a program can accept inputs from the user.

The common way in Python Command-line Arguments is the input() method.

 Another way to pass input to the program is Command-line arguments. Almost

every modern programming language support command line arguments.

 In a similar fashion, python does support command line arguments. It‘s a very

important feature as it allows for dynamic inputs from the user.

 In a command-line argument, the input is given to the program through command

prompt rather than python script like input() method.

 The Argument which are passing at the time of execution are called Command Line

Arguments.

 Python supports different modules to handle command-line arguments. one of the

popular one of them is sys module.

V RajaSekhar CSE Dept 27

sys module:
 This is the basic and oldest method to handle command-line arguments in

python. It has a quite similar approach as the C library argc/argv to access the

arguments.

 sys module implements the command line arguments through list structure

named sys.argv argv is the internal list structure which holds the arguments

passed in command prompt

 argv is not Array it is a List. It is available sys Module.

 argv à list to handle dynamic inputs from the user

 argv[0] à python filename

 argv[1] àargument 1

 argv[2] à argument 2

 argv[3] à argument 3 and so on.

 Steps to create command line arguments program:

1. Write a python program

2. Save the python program as <program name>.py extension

3. Open a command prompt and change the directory to the python

program path

4. Use the below command to execute the program

5. py < python file.py > < arg1 > < arg2 > < arg3 >

6. Example: py demo.py 10 20 30 40 50

 The first item in argv list i.e argv[0] is the python file name à in this case

demo.py

 argv[1] is the first argument à 10

 argv[2] is the second argument à 20

 argv[3] is the third argument à 30 and so on

 By default, the type of argv is ―String‖ so we have to typecast as per our

requirement.

Example1:

 import sys

print(type(sys.argv))

 Output:

 D:\>py c.py

<class 'list'>

Example2:

from sys import argv

print('The Number of Command Line Arguments:', len(argv))

print('The List of Command Line Arguments:', argv)

print('Command Line Arguments one by one:')

V RajaSekhar CSE Dept 28

for x in argv:

 print(x)

 OutPut:

D:\>py c.py Raj cse ds 10

The Number of Command Line Arguments: 5

The List of Command Line Arguments: ['c.py', 'Raj', 'cse', 'ds', '10']

Command Line Arguments one by one:

c.py

Raj

cse

ds

10

Example3:Add two values using command line

from sys import argv

a=int(argv[1])

b=int(argv[2])

sum=a+b

print("The Sum:",sum)

OutPut:

D:\>py c.py 1 2

The Sum: 3

Example2:Sum of elements

from sys import argv

sum=0

args=argv[1:]

for x in args :

 n=int(x)

 sum=sum+n

print("The Sum:",sum)

OutPut:

D:\>py c.py 1 2 3 4 5

The Sum: 15

Exception Handling in Python

Generally any programming language supports two types of errors,

1. Syntax errors

2. Runtime errors

V RajaSekhar CSE Dept 29

Syntax errors:

 The errors which occur because of invalid syntax are called syntax errors.

 Programmer is responsible to correct these syntax errors. Once all syntax errors are

corrected then only program execution will be started.

Eg 1:

a=10

if a==10

 print("Raj")

SyntaxError: invalid syntax

Eg 2:

print "Raj"

SyntaxError: Missing parentheses in call to 'print'

Runtime errors:
 Runtime errors are also called exceptions.

 When the program is executing, if something goes wrong because of end user input

or, programming logic or memory problems etc then we will call them runtime

errors.

Exception:
An exception is nothing but an unwanted or unexpected block which disturbs the normal

execution flow of program.

 An Exception is a run time error that happens during the execution of program.

 An exception is an error that happens during the execution of a program.

 Python raises an exception whenever it tries to execute invalid code.

 Error handling is generally resolved by saving the state of execution at the moment

the error occurred and interrupting the normal flow of the program to execute a

special function or piece of code, which is known as the exception handler.

 Depending on the kind of error ("division by zero", "file open error" and so on)

which had occurred, the error handler can "fix" the problem and the program can be

continued afterwards with the previously saved data.

Eg:

1. print(2/0) ==>ZeroDivisionError: division by zero

2. print(2/"ten") ==>TypeError: unsupported operand type(s) for /: 'int' and 'str'

a=int(input("Enter Number:"))

 print(a)

 D:\>py test.py

2

 Enter Number:ten

 ValueError: invalid literal for int() with base 10: 'ten‘

V RajaSekhar CSE Dept 30

Types of Exceptions:
Exceptions are divided into two types they are,

1. System defined exceptions

2. User defined exceptions

System defined exceptions:

 These exceptions are defined by system so these are called system defined or pre-

defined exceptions.

 Every exception in Python is an object. For every exception type the corresponding

classes are available.

 Whevever an exception occurs PVM will create the corresponding exception object

and will check for handling code. If handling code is not available then Python

interpreter terminates the program abnormally and prints corresponding exception

information to the console.

 The rest of the program won't be executed

 Some of system defined exceptions are as follows,

S. No Name of the Built�in Exception Explanation

1 ZeroDivisionError
It is raised when the denominator in a division

operation is zero

2 NameError
It is raised when a local or global variable name is

not defined

3 IndexError
It is raised when the index or subscript in a

sequence is out of range.

4 TypeError
It is raised when an operator is supplied with a

value of incorrect data type.

5 ValueError

It is raised when a built-in method or operation

receives an argument that has the right data type

but mismatched or inappropriate values.

6 KeyError
KeyError exception is what is raised when you

try to access a key that isn't in a dictionary (dict).

7 FileNotFoundError

The error FileNotFoundError occurs because

you either don't know where a file actually is on

your computer. Or, even if you do, you don't

know how to tell your Python program where it

is.

8 ModuleNotFoundError
A ModuleNotFoundError is raised when Python

cannot successfully import a module.

1. ZeroDivisionError:

V RajaSekhar CSE Dept 31

>>> a=10

>>> b=0

>>> print(a/b)

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 print(a/b)

ZeroDivisionError: division by zero

2. NameError:

>>> print("a=",a)

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 print("a=",a)

NameError: name 'a' is not defined

3. IndexError:

>>> name="MREC"

>>> print(name[10])

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 print(name[10])

IndexError: string index out of range

4. ValueError:

>>> a=int(input("Enter a value:"))

Enter a value:Raj

Traceback (most recent call last):

 File "<pyshell#10>", line 1, in <module>

 a=int(input("Enter a value:"))

ValueError: invalid literal for int() with base 10: 'Raj'

5. TypeError:

>>> a=10

>>> b="raj"

>>> print(a/b)

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 print(a/b)

TypeError: unsupported operand type(s) for /: 'int' and 'str'

V RajaSekhar CSE Dept 32

6. KeyError:

>>> D={1:'MREC',2:'CSE',3:'DS',4:'RAJ'}

>>> print(D[1])

MREC

>>> print(D[5])

Traceback (most recent call last):

 File "<pyshell#8>", line 1, in <module>

 print(D[5])

KeyError: 5

7. FileNotFoundError:

>>> f=open('Raj.txt','r')

Traceback (most recent call last):

 File "<pyshell#22>", line 1, in <module>

 f=open('Raj.txt','r')

FileNotFoundError: [Errno 2] No such file or directory: 'Raj.txt'

8. ModuleNotFoundError:

>>> import cse_ds

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 import cse_ds

ModuleNotFoundError: No module named 'cse_ds'

Detecting and Handling Exceptions or Exception Handing in Python

 Exception handling is a concept used in Python to handle the exceptions that occur

during the execution of any program. Exceptions are unexpected errors that can

occur during code execution.

 Exception handling does not mean repairing exception; we have to define an

alternative way to continue rest of the program normally.

 It is highly recommended to handle exceptions. The main objective of exception

handling is Graceful Termination of the program.

 Exception can be handled in two ways They are

1. Default Exception Handling

2. Customized Exception Handling

 The flowchart describes the exception handling process.

V RajaSekhar CSE Dept 33

Default Exception Handling

 Every exception in Python is an object. For every exception type the corresponding

classes are available.

 Whenever an exception occurs PVM will create the corresponding exception object

and will check for handling code.

 If handling code is not available then Python interpreter terminates the program

abnormally and prints corresponding exception information to the console.

 The rest of the program won't be executed. This entire process we call it as Default

Exception Handling

 If an exception raised inside any method then the method is responsible to create

Exception object with the following information.

 Name of the exception.

 Description of the exception.

V RajaSekhar CSE Dept 34

 Location of the exception.

 After creating that Exception object the method handovers that object to the PVM.

 PVM checks whether the method contains any exception handling code or not. If

method won't contain any handling code then PVM terminates that method

abnormally.

 PVM identifies the caller method and checks whether the caller method contain any

handling code or not. If the caller method also does not contain handling code then

PVM terminates that caller also abnormally

 Then PVM handovers the responsibility of exception handling to the default

exception handler.

 Default exception handler just print exception information to the console in the

following formats and terminates the program abnormally.

 Name of exception: description

 Location of exception

Example:

print("Start:")

print("Default Exception Handling:")

print(15/0)

print("No Exception Block:")

print("Stop")

OutPut:

Start:

Default Exception Handling:

Traceback (most recent call last):

 File "C:/Users/rajas/AppData/Local/Programs/Python/Python39/test.py",

line 3, in <module>

 print(15/0)

ZeroDivisionError: division by zero

Customized Exception Handling

 It is highly recommended to handle exceptions.

 The Exceptions can be handled with the help of the following keywords or clauses in

python.

S. No

Name of the

Exception Type

Keyword

Explanation

1. try
It will run the code block in which you expect an

error to occur.

2. except
 Define the type of exception you expect in the try

block

V RajaSekhar CSE Dept 35

3. else
If there no exception, then this block of code will be

executed

4. finally
Irrespective of whether there is an exception or not,

this block of code will always be executed.

5. raise
An exception can be raised forcefully by using

the raise clause in Python.

 The code which may raise exception is called risky code and we have to take risky

code inside try block. The corresponding handling code we have to take inside except

block.

 We can handle the Exception with following ways.

1. The try-expect statement

 If the Python program contains suspicious or risky code that may throw the

exception, we must place that code in the try block.

 The try block must be followed with the except statement, which contains a block of

code that will be executed if there is some exception in the try block.

 Within the try block if anywhere exception raised then rest of the try block wont be

executed even though we handled that exception. Hence we have to take only risky

code inside try block and length of the try block should be as less as possible.

 If any statement which is not part of try block raises an exception then it is always

abnormal termination.

Syntax:

try :

 #statements in try block

except :

 #executed when error in try block

Example: Without Specific error type:

print("Start:")

print("Exception Handling without Specific Error Type:")

try:

 print(15/0)

except:

V RajaSekhar CSE Dept 36

 print("Error occured")

print("Stop")

OutPut:

Start:

Exception Handling without Specific Error Type:

Error occured

Stop

Example: Catch Specific Error Type

print("Start:")

print("Exception Handling with Specific Error Type:")

try:

 print(15/0)

except ZeroDivisionError:

 print("we can't divide the value with zero")

print("Stop")

OutPut:

Start:

Exception Handling with Specific Error Type:

we can't divide the value with zero

Stop

try with multiple except blocks:
 The way of handling exception is varied from exception to exception. Hence for

every exception type a separate except block we have to provide. i.e try with multiple

except blocks is possible and recommended to use.

 As we know, a single try block may have multiple except blocks. The following

example uses two except blocks to process two different exception types:

Example:

print("Start:")

print("Exception Handling with Specific Error Type:")

try:

 print(15/0)

except TypeError:

 print('Unsupported operation')

except ZeroDivisionError:

 print("we can't divide the value with zero")

print("Stop")

OutPut:

V RajaSekhar CSE Dept 37

Start:

Exception Handling with Specific Error Type:

we can't divide the value with zero

Stop

Default except block:
 We can use default except block to handle any type of exceptions.

 In default except block generally we can print normal error messages.

 If try with multiple except blocks available then default except block should be last,

otherwise we will get Syntax Error.

Syntax:

 except:

 statements

Eg:

print("Start:")

print("Default except block:")

try:

 x=int(input("Enter First Number: "))

 y=int(input("Enter Second Number: "))

 print(x/y)

except ZeroDivisionError:

 print("ZeroDivisionError:Can't divide with zero")

except:

 print("Default Except:Plz provide valid input only")

print("Stop")

OutPut:

Start:

Default except block:

Enter First Number: 5

Enter Second Number: a

Default Except:Plz provide valid input only

Stop

except statement using with exception variable:
 We can use the exception variable with the except statement. It is used by using the

as keyword. this object will return the cause of the exception. Consider the following

example:

print("Start:")

try:

 x=int(input("Enter First Number: "))

V RajaSekhar CSE Dept 38

 y=int(input("Enter Second Number: "))

 print(x/y)

except Exception as e:

 print("ZeroDivisionError:Can't divide with zero")

 print(e)

print("Stop")

OutPut:

Start:

Enter First Number: 5

Enter Second Number: 0

ZeroDivisionError:Can't divide with zero

division by zero

Stop

2.else and finally:
 In Python, keywords are else and finally can also be used along with the try and

except clauses.

 In python, you can also use else clause on the try-except block which must be

present after all the except clauses. The code enters the else block only if the try

clause does not raise an exception.

Syntax:

try:

 #statements in try block

except:

 #executed when error in try block

else:

 #executed if try block is error-free

finally:

 #executed irrespective of exception occured or not

V RajaSekhar CSE Dept 39

 The finally block consists of statements which should be processed regardless of an

exception occurring in the try block or not. As a consequence, the error-free try block

skips the except clause and enters the finally block before going on to execute the rest

of the code.

 If, however, there's an exception in the try block, the appropriate except block will be

processed, and the statements in the finally block will be processed before proceeding

to the rest of the code.

 The example below accepts two numbers from the user and performs their division.

It demonstrates the uses of else and finally blocks.

print("Start:")

try:

 print('try block')

 x=int(input('Enter a number: '))

 y=int(input('Enter another number: '))

 z=x/y

except ZeroDivisionError:

 print("except ZeroDivisionError block")

 print("Division by 0 not accepted")

else:

 print("else block")

 print("Division = ", z)

finally:

 print("finally block")

V RajaSekhar CSE Dept 40

 x=0

 y=0

print ("Out of try, except, else and finally blocks.")

print("Stop")

OutPut:

Start:

try block

Enter a number: 5

Enter another number: 0

except ZeroDivisionError block

Division by 0 not accepted

finally block

Out of try, except, else and finally blocks.

Stop

3.Raise an Exception
 An exception can be raised forcefully by using the raise clause in Python. It is useful

in in that scenario where we need to raise an exception to stop the execution of the

program.

 Syntax : raise Exception_class,<value>

 To raise an exception, the raise statement is used. The exception class name follows

it.An exception can be provided with a value that can be given in the parenthesis.

 To access the value "as" keyword is used. "e" is used as a reference variable which

stores the value of the exception.

 We can pass the value to an exception to specify the exception type

Example 1:

print("Start:")

try:

 x=int(input('Enter a number upto 100: '))

 if x > 100:

 raise ValueError(x)

except ValueError:

 print(x, "is out of allowed range")

else:

 print(x, "is within the allowed range")

print("Stop")

OutPut:6

Start:

Enter a number upto 100: 200

V RajaSekhar CSE Dept 41

200 is out of allowed range

Stop

Example 2 Raise the exception with user defined message

print("Start:")

try:

 x=int(input('Enter a positive integer:'))

 if x <0:

 raise ValueError("You entered negative number")

except ValueError as e:

 print(e)

print("Stop")

Output:

Start:

Enter a positive integer:-2

You entered negative number

Stop

User defined exceptions

 Some time we have to define and raise exceptions explicitly to indicate that

something goes wrong, such type of exceptions are called User Defined Exceptions

or Customized Exceptions.

 Programmer is responsible to define these exceptions and Python not having any

idea about these. Hence we have to raise explicitly based on our requirement by

using "raise" Keyword.

 steps to create user defined exceptions

Step 1: Create User Defined Exception Class

 Write a new class for custom exception and inherit it from an in-build Exception

class.

 Define function __init__() to initialize the object of the new class.

 You can add as many instance variables as you want, to support your exception.

For simplicity, we are creating one instance variable called message.

class YourException(Exception):

 def __init__(self, message):

 self.message = message

You have created a simple user-defined exception class.

V RajaSekhar CSE Dept 42

self :

 self represents the instance of the class. By using the "self" keyword we can access

the attributes and methods of the class in python.

__init__ :

 "__init__" is a reseved method in python classes. It is known as a constructor in

object oriented concepts. This method called when an object is created from the

class and it allow the class to initialize the attributes of a class.

Step 2: Raising Exception

 Now you can write a try-except block to catch the user-defined exception in

Python.

 For testing, inside the try block we are raising exception using raise keyword.

 raise YourException("Userdefined Exceptions")

 It creates the instance of the exception class YourException. You can pass any

message to your exception class instance.

Step 3: Catching Exception

 Now you have to catch the user-defined exception using except block.

except YourException as err:

 print(err.message)

 We are catching user defined exception called YourException.

Step 4: Write a Program for User-Defined Exception in Python

class ChildrenException(Exception):

 def __init__(self,arg):

 self.msg=arg

class YouthException(Exception):

 def __init__(self,arg):

 self.msg=arg

class AdultException(Exception):

 def __init__(self,arg):

 self.msg=arg

class SeniorException(Exception):

 def __init__(self,arg):

 self.msg=arg

age=int(input("Enter Age:"))

if (age<18) and (age>0):

 raise ChildrenException("The Person having the age between (0-18)!!!")

elif (age<25) and (age>=19):

 raise YouthException("The Person having the age between (19-24)!!!")

V RajaSekhar CSE Dept 43

elif (age<65) and (age>=25):

 raise AdultException("The Person having the age between (25-64)!!!")

elif (age>=65):

 raise SeniorException("The Person having the age between (65

above)!!!")

else:

 print("You have entered invalid age!!!")

Output:

Enter Age:35

Traceback (most recent call last):

 File

"C:/Users/rajas/AppData/Local/Programs/Python/Python39/user.py",

line 19, in <module>

 raise AdultException("The Person having the age between (25-64)!!!")

AdultException: The Person having the age between (25-64)!!!-

Example2:

class PassException(Exception):

 def __init__(self,arg):

 self.msg=arg

class FailException(Exception):

 def __init__(self,arg):

 self.msg=arg

class MarksException(Exception):

 def __init__(self,arg):

 self.msg=arg

try:

 marks=int(input("Enter the marks of a subject:"))

 if(marks<35) and (marks>=0):

 raise FailException("Fail")

 elif(marks>=35):

 raise PassException("Pass")

 else:

 raise MarksException("Marks should be positive")

except FailException as e:

 print(e)

except PassException as e:

 print(e)

except MarksException as e:

V RajaSekhar CSE Dept 44

 print(e)

print("Stop")

Output:

Enter the marks of a subject:-25

Marks should be positive

Stop

ASSERTIONS in python

 Python assert keyword is defined as a debugging tool that tests a condition. The

Assertions are mainly the assumption that asserts or state a fact confidently in

the program.

 The process of identifying and fixing the bug is called debugging.

 Very common way of debugging is to use print() statement. But the problem with

the print() statement is after fixing the bug,compulsory we have to delete the

extra added print() statments,otherwise these will be executed at runtime which

creates performance problems and disturbs console output.

 To overcome this problem we should go for assert statement. The main

advantage of assert statement over print() statement is after fixing bug we are not

required to delete assert statements. Based on our requirement we can enable or

disable assert statements.

 Hence the main purpose of assertions is to perform debugging. Usully we can

perform debugging either in development or in test environments but not in

production environment. Hence assertions concept is applicable only for dev and

test environments but not for production environment.

Types of assert statements:

There are 2 types of assert statements

1. Simple Version

2. Augmented Version

1. Simple Version:

Syntax: assert conditional_expression

2. Augmented Version:

Syntax: assert conditional_expression,message

 conditional_expression will be evaluated and if it is true then the program will be

continued.If it is false then the program will be terminated by raising AssertionError.

By seeing AssertionError, programmer can analyze the code and can fix the

problem.

Examples:1

assert True

V RajaSekhar CSE Dept 45

print("Validation Passed")

Output: Validation Passed

Examples:2

assert False

print("Validation Passed")

Output:

Traceback (most recent call last):

 File "D://assert1.py", line 1, in <module> assert False

AssertionError

Examples:3

assert False ,"Validation Failed"

print("Validation Passed")

Output:

Traceback (most recent call last):

 File "D://assert1.py",, line 1, in <module>

 assert False ,"Validation Failed"

AssertionError: Validation Failed

Example: 4

assert "Python" in "Python Programming"

print("Validation Passed")

Output:

 Validation Passed

Example:5

assert "Python" in "python Programming","Validation Failed"

print("Validation Passed")

Output:

Traceback (most recent call last):

 File "D: /assert1.py", line 1, in <module>

 assert "Python" in "python Programming","Validation Failed"

AssertionError: Validation Failed

Example:6

str1="Raj"

str2="Raj"

assert str1==str2,"Strings are not matched"

print("String are matched")

Output:

 String are matched

Example:7

V RajaSekhar CSE Dept 46

str1="Raj"

str2="Raj"

assert str1==str2,"Strings are not matched"

print("String are matched")

Output:

Traceback (most recent call last):

 File "D:/assert1.py", line 3, in <module>

 assert str1!=str2,"Strings are not matched"

AssertionError: Strings are not matched

Example:8

assert "Raj" in ["MREC","CSE","DS","Raj"],"Validation Failed"

print("Validation passed")

Output:

Validation passed

Example:9

assert "raj" in ["MREC","CSE","DS","Raj"],"Validation Failed"

print("Validation passed")

Output:

Traceback (most recent call last):

 File "D:/assert1.py", line 1, in <module>

 assert "raj" in ["MREC","CSE","DS"],"Validation Failed"

AssertionError: Validation Failed

Example:10

import math

assert math.factorial(5)==120,"Validation Failed"

print("Validation passed")

Output:

Validation passed

Example:11

import math

assert math.factorial(5)!=120,"Validation Failed"

print("Validation passed")

Output:

Traceback (most recent call last):

 File "D:/assert1.py", line 2, in <module>

 assert math.factorial(5)!=120,"Validation Failed"

AssertionError: Validation Failed

