
V RajaSekhar CSE Dept 1

Python Programming

MODULE – IV

Agenda:

 Classes and Object-Oriented Programming (OOP): OOP,

 Classes, Class Attributes

 Instances,Instance Attributes

 Binding and Method Invocation

 Composition

 Subclassing and Derivation

 Inheritance

 Built-in Functions for Classes, Instances, and Other Objects,

 Types vs. Classes/Instances

 Customizing Classes with Special Methods,

 Privacy,

 Delegation and Wrapping

V RajaSekhar CSE Dept 2

Object Oriented Programming (OOP)

 In all the programs, we have designed our program around functions i.e. blocks of

statements which manipulate the data. This is called the procedure-oriented way of

programming.

 There is another way of organizing our program which is to combine data and functionality

and wrap it inside something called an object. This is called the object oriented

programming paradigm.

 Classes and objects are the two main aspects of object oriented programming.

 A class creates a new type where objects are instances of the class.

 Object Oriented Programming is a way of computer programming using the idea of

“objects” to represents data and methods. It is also, an approach used for creating neat and

reusable code instead of a redundant one.

 The program is divided into self-contained objects or several mini-programs. Every

Individual object represents a different part of the application having its own logic and data

to communicate within themselves.

 Now, to get a more clear picture of why we use oops instead of pop, I have listed down the

differences below.

 Procedure Oriented Programming Object Oriented Programming

Divided Into In POP, program is divided into small

parts called functions.

In OOP, program is divided into parts

called objects.

Importance In POP, Importance is not given

to data but to functions as well

as sequence of actions to be done.

In OOP, Importance is given to the

data rather than procedures or

functions because it works as a real

world.

approach POP follows Top Down approach. OOP follows Bottom Up approach.

Access

Specifies

POP does not have any access specifier. OOP has access specifies named
Public, Private, Protected.

Data

Moving

In POP, Data can move freely from

function to function in the system.

In OOP, objects can move and

communicate with each other
through member functions.

Expansion To add new data and function in POP is
not so easy.

OOP provides an easy way to add
new data and function.

Data Access In POP, Most function uses Global data
for sharing that can be accessed freely

from function to function in the system.

In OOP, data cannot move easily
from function to function, it can be

kept public or private so we can

control the access of data.

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the

form of Function Overloading and
Operator Overloading.

Examples Examples of POP are: C, VB,
FORTRAN, and Pascal……

Examples of OOP are: C++, JAVA,
VB.NET, C#.NET,PYTHON….

V RajaSekhar CSE Dept 3

 Major principles of object-oriented programming system are given below.

 Class

 Object

 Method

 Inheritance

 Polymorphism

 Data Abstraction

 Encapsulation

Class:
 A Class in Python is a logical grouping of data and functions. It gives the freedom to

create data structures that contains arbitrary content and hence easily accessible.

 A class is a "blueprint" or "prototype" to define an object. Every object has its

properties and methods. That means a class contains some properties and methods.

 A class is the blueprint from which the individual objects are created. Class is

composed of three things: a name, attributes, and operations

 For example: if you have an employee class, then it should contain an attribute and

method, i.e. an email id, name, age, salary, etc.

Syntax

class ClassName:

 <statement-1>

 .

 .

 <statement-N>

Object
 An object (instance) is an instantiation of a class. When class is defined, only the

description for the object is defined. Therefore, no memory or storage is allocated.

 Object is composed of three things: a name, attributes, and operations or Objects are

an instance of a class. It is an entity that has state and behavior.

Syntax: object_name = ClassName(arguments)

To define class you need to consider following points

Step 1) In Python, classes are defined by the "Class" keyword

 class myClass():

Step 2) Inside classes, you can define functions or methods that are part of this class

def ds(self):

 print ("DS Branch")

def cse (self,value):

 print ("CSE Branch" ,value)

V RajaSekhar CSE Dept 4

Here we have defined ds that prints "DS Branch"

Another method we have defined is cse that prints "CSE Branch"+ value . value is

the variable supplied by the calling method

Step 3) Everything in a class is indented, just like the code in the function, loop, if

statement, etc. Anything not indented is not in the class

Example:

class myClass:

 def ds(self):

 print("DS Branch")

 def cse(self,value):

 print("CSE Branch",value)

"self" in Python:
 The self-argument refers to the object itself. Hence the use of the word self. So

inside this method, self will refer to the specific instance of this object that's

being operated on.

 Self is the name preferred by convention by Pythons to indicate the first

parameter of instance methods in Python. It is part of the Python syntax to

access members of objects

Step 4) To make an object of the class

 c = myClass()

Step 5) To call a method in a class

 c.ds()

 c.cse(5)

 Notice that when we call the ds or cse, we don't have to supply the self-keyword.

That's automatically handled for us by the Python runtime.

 Python runtime will pass "self" value when you call an instance method on in

instance, whether you provide it deliberately or not You just have to care about the

non-self arguments

Step 6) Here is the complete code

Example file for working with classes

class myClass:

 def ds(self):

 print("DS Branch")

 def cse(self,value):

 print("CSE Branch",value)

c=myClass()

c.ds()

c.cse(5)

output: DS Branch

 CSE Branch 5

V RajaSekhar CSE Dept 5

Python Constructor:

 Python Constructor in object-oriented programming with Python is a special kind of

method/function we use to initialize instance members of that class.

 The name of the constructor should be __init__(self)

 Constructor will be executed automatically at the time of object creation.

 The main purpose of constructor is to declare and initialize instance variables.

 Per object constructor will be executed only once.

 Constructor can take atleast one argument(atleast self)

 Constructor is optional and if we are not providing any constructor then python will

provide default constructor

Types of Constructors:
We observe three types of Python Constructors, two of which are in our hands. Let‟s begin

with the one that isn‟t.

 Default Constructor

 Non- Parameterized Constructor

 Parameterized Constructor

Default Constructor:
A constructor that Python lends us when we forget to include one. This one does absolutely

nothing but instantiates the object; it is an empty constructor- without a body.

Example:

class defaultConstructor:

 def display(self):

 print("This is Default Constructor")

dc=defaultConstructor()

dc.display()

 OutPut:

 This is Default Constructor

Non- Parameterized Constructor:
 When we want a constructor to do something but none of that is to manipulate

values, we can use a non-parameterized constructor.

 As we know that a constructor always has a name init and the name init is prefixed

and suffixed with a double underscore(__). We declare a constructor using def

keyword, just like methods.

Syntax: def __init__(self):

 # body of the constructor

V RajaSekhar CSE Dept 6

Example:

class NonParameterizedConstructor:

 def __init__(self):

 print("Non-Parameterized Constructor")

 def display(self,name):

 print("Name=",name)

npc=NonParameterizedConstructor()

npc.display('Raj')

 OutPut:

 Non- Parameterized Constructor

Name= Raj

Parameterized constructor:
 Constructor with parameters is known as parameterized constructor.The

parameterized constructor take its first argument as a reference to the instance being

constructed known as self and the rest of the arguments are provided by the

programmer.

Example:

class Addition:

 first = 0

 second = 0

 answer = 0

 def __init__(self, f, s):

 self.first = f

 self.second = s

 def display(self):

 print("First number = " + str(self.first))

 print("Second number = " + str(self.second))

 print("Addition of two numbers = " + str(self.answer))

 def calculate(self):

 self.answer = self.first + self.second

obj = Addition(1000, 2000)

obj.calculate()

obj.display()

OutPut:

First number = 1000

Second number = 2000

Addition of two numbers = 3000

V RajaSekhar CSE Dept 7

Class Attributes and Instance Attributes

Attributes are noting but variables we the following types are there in python.

Types of Class Variables in Python: There are three different types of variables in

OOPs in python.

 Instance variables (object level variables)

 Static variables (class level variables)

 Local variables

Instance Variables in Python:
If the value of a variable is changing from object to object then such variables are called as

instance variables.

class Student:

 def __init__(self, name, id):

 self.name=name

 self.id=id

s1=Student('Srav', 1)

s2=Student('Raj', 2)

print("Studen1 info:")

print("Name: ", s1.name)

print("Id : ", s1.id)

print("Studen2 info:")

print("Name: ",s2.name)

print("Id : ",s2.id)

OutPut:

Studen1 info:

Name: Srav

Id : 1

Studen2 info:

Name: Raj

Id : 2

Static variables in Python:
 If the value of a variable is not changing from object to object, such types of variables

are called static variables or class level variables. We can access static variables either

by class name or by object name. Accessing static variables with class names is

highly recommended than object names.

Example:

class Student:

 college='MREC'

 def __init__(self, name, id):

V RajaSekhar CSE Dept 8

 self.name=name

 self.id=id

s1=Student('SRAV', 1)

s2=Student('RAJ', 2)

print("Studen1 info:")

print("Name: ", s1.name)

print("Id : ", s1.id)

print("College name n : ", Student.college)

print("\n")

print("Studen2 info:")

print("Name: ",s2.name)

print("Id : ",s2.id)

print("College name : ", Student.college)

OutPut:

Studen1 info:

Name: SRAV

Id : 1

College name n : MREC

Studen2 info:

Name: RAJ

Id : 2

College name : MREC

Local Variables in Python:
 The variable which we declare inside of the method is called a local variable.

Generally, for temporary usage we create local variables to use within the methods.

The scope of these variables is limited to the method in which they are declared.

They are not accessible out side of the methods.

Example:

class mrec:

 dept="DS"#static variable

 def display(self):

 dept="CSE" #Local Variable

 print(dept)

d=mrec()

d.display()

print(d.dept)

OutPut:

 CSE

DS

V RajaSekhar CSE Dept 9

Binding and Method Invocation:
 There are three main types of methods in Python.

 Instance methods

 Static methods

 Class methods.

Instance methods:
 Instance methods are the most common type of methods in Python classes. These

are so called because they can access unique data of their instance.

 And we call it as default method in python.

 If you have two objects each created from a car class, then they each may have

different properties. They may have different colors, engine sizes, seats, and so on.

 Instance methods are methods which act upon the instance variables of the class.

They are bound with instances or objects, that”s why called as instance methods.

The first parameter for instance methods should be self variable which refers to

instance. Along with the self variable it can contain other variables as well.

 Any method you create will automatically be created as an instance method, unless

you tell Python otherwise.

Example:

class Test:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 def avg(self):

 return (self.a + self.b) / 2

s1 = Test(10, 20)

print(s1.avg())

OutPut:

 15.0

Class Methods:
 Class methods are methods which act upon the class variables or static variables of

the class. We can go for class methods when we are using only class variables (static

variables) within the method.

 Class methods should be declared with @classmethod.

 Just as instance methods have „self‟ as the default first variable, class method should

have „cls‟ as the first variable. Along with the cls variable it can contain other

variables as well.

 Class methods are rarely used in python

V RajaSekhar CSE Dept 10

Example:

class Mrec:

 Dept="CSE"

 def Dept_name(self,name):

 print("Instance method=",name)

 @classmethod

 def get_Dept(cls):

 return cls.Dept

m=Mrec()

m.Dept_name("DS")

print("Class method=",Mrec.get_Dept())

OutPut:

Instance method= DS

Class method= CSE

Static methods
 A static method can be called without an object for that class, using the class name

directly. If you want to do something extra with a class we use static methods.

 Inside these methods we won‟t use any instance or class variables. No arguments like

cls or self are required at the time of declaration.

 We can declare static method explicitly by using @staticmethod decorator.

 We can access static methods by using class name or object reference

Example:

class Demo:

 @staticmethod

 def sum(x, y):

 print(x+y)

 @staticmethod

 def multiply(x, y):

 print(x*y)

Demo.sum(2, 3)

Demo.multiply(2,4)

OutPut:

 5

 8

V RajaSekhar CSE Dept 11

Example:

class Demo:

 x=10

 y=5

 def __init__(self,x,y):

 self.x=x

 self.y=y

 def add(self):

 print("Sum=",self.x+self.y)

 @classmethod

 def sub(cls):

 print("Sub=", cls.x-cls.y)

 @staticmethod

 def multiply(x,y):

 print("Mul=",x*y)

d=Demo(10,5)

d.add()

Demo.sub()

Demo.multiply(10,5)

OutPut:

Sum= 15

Sub= 5

Mul= 50

Inheritance or Is-A Relation in Python

 The inheritance is the process of acquiring the properties of one class to another

class.

 Inheritance in python programming is the concept of deriving a new class from an

existing class.

 Using the concept of inheritance we can inherit the properties of the existing class to

our new class.

 The new derived class is called the child class and the existing class is called the

parent class.

 The Parent class is the class which provides features to another class. The parent

class is also known as Base class or Superclass.

 The Child class is the class which receives features from another class. The child

class is also known as the Derived Class or Subclass.

Advantages of Inheritance:

 Code reusability- we do not have to write the same code again and again, we can

V RajaSekhar CSE Dept 12

just inherit the properties we need in a child class.

 It represents a real world relationship between parent class and child class.

 It is transitive in nature. If a child class inherits properties from a parent class,

then all other sub-classes of the child class will also inherit the properties of the

parent class.

 There are five types of inheritances, and they are as follows.

 Simple Inheritance (or) Single Inheritance

 Multiple Inheritance

 Multi-Level Inheritance

 Hierarchical Inheritance

 Hybrid Inheritance

The following picture illustrates how various inheritances are implemented.

Creating a Child Class

 In Python, we use the following general structure to create a child class from a parent

class.

Syntax:

class ChildClassName(ParentClassName):

 ChildClass implementation

V RajaSekhar CSE Dept 13

Simple Inheritance (or) Single Inheritance
In this type of inheritance, one child class derives from one parent class. Look at the

following example code.

Example

class Parent:

 def func1(self):

 print("This function is in parent class.")

class Child(Parent):

 def func2(self):

 print("This function is in child class.")

object = Child()

object.func1()

 object.func2()

OutPut:

This function is in parent class.

 This function is in child class.

Multi-Level Inheritance
 In this type of inheritance, the child class derives from a class which already derived

from another class. Look at the following example code.

Example:

class Parent:

 def func1(self):

 print('this is function 1')

class Child(Parent):

 def func2(self):

 print('this is function 2')

class Child2(Child):

 def func3(self):

 print('this is function 3')

ob = Child2()

ob.func1()

ob.func2()

 ob.func3()

OutPut:

this is function 1

this is function 2

 this is function 3

V RajaSekhar CSE Dept 14

Hierarchical inheritance:
 When we derive or inherit more than one child class from one (same) parent class.

Then this type of inheritance is called hierarchical inheritance.

Example:

class Parent:

 def func1(self):

 print("This function is in parent class.")

class Child1(Parent):

 def func2(self):

 print("This function is in child 1.")

class Child2(Parent):

 def func3(self):

 print("This function is in child 2.")

object1 = Child1()

object2 = Child2()

object1.func1()

object1.func2()

object2.func1()

 object2.func3()

OutPut:

This function is in parent class.

This function is in child 1.

This function is in parent class.

 This function is in child 2.

Multiple Inheritance:
When child class is derived or inherited from the more than one parent classes. This is

called multiple inheritance. In multiple inheritance, we have two parent classes/base classes

and one child class that inherits both parent classes‟ properties.

Example:

class Father:

 fathername = ""

 def father(self):

 print(self.fathername)

class Mother:

 mothername = ""

 def mother(self):

 print(self.mothername)

class Son(Mother, Father):

V RajaSekhar CSE Dept 15

 def parents(self):

 print("Father :", self.fathername)

 print("Mother :", self.mothername)

s1 = Son()

s1.fathername = "Raj"

s1.mothername = "Srav"

 s1.parents()

OutPut:

Father : Raj

 Mother : Srav

Hybrid Inheritance:
Hybrid inheritance satisfies more than one form of inheritance ie. It may be consists of all

types of inheritance that we have done above. It is not wrong if we say Hybrid Inheritance is

the combinations of simple, multiple, multilevel and hierarchical inheritance. This type of

inheritance is very helpful if we want to use concepts of inheritance without any limitations

according to our requirements.

Example:

class School:

 def func1(self):

 print("This function is in school.")

class Student1(School):

 def func2(self):

 print("This function is in student 1. ")

class Student2(School):

 def func3(self):

 print("This function is in student 2.")

class Student3(Student1, School):

 def func4(self):

 print("This function is in student 3.")

object = Student3()

object.func1()

object.func2()

object.func4()

OutPut:

This function is in school.

This function is in student 1.

 This function is in student 3.

V RajaSekhar CSE Dept 16

Super() Function in Python:
 super() is a predefined function in python. By using super() function in child class,

we can call,

 Super class constructor.

 Super class variables.

 Super class methods.

1. Calling super class constructor from child class constructor using super()

Example:

class A:

 def __init__(self):

 print("super class A constructor")

class B(A):

 def __init__(self):

 print("Child class B constructor")

 super().__init__()

 b=B()

OutPut:

Child class B constructor

 super class A constructor

2. Calling super class method from child class method using super()

class A:

 def m1(self):

 print("Super class A: m1 method")

class B(A):

 def m1(self):

 print("Child class B: m1 method")

 super().m1()

b=B()

b.m1()

Output:

Child class B: m1 method

 Super class A: m1 method

3. Calling super class variable from child class method using super()

class A:

 x=10

 def m1(self):

 print("Super class A: m1 method")

V RajaSekhar CSE Dept 17

class B(A):

 x=20

 def m1(self):

 print('Child class x variable', self.x)

 print('Super class x variable', super().x)

b=B()

b.m1()

Output:

Child class x variable 20

 Super class x variable 10

Composition (Has A Relation):

 It is one of the fundamental concepts of Object-Oriented Programming. In this

concept, we will describe a class that references to one or more objects of other

classes as an Instance variable. Here, by using the class name or by creating the

object we can access the members of one class inside another class. It enables

creating complex types by combining objects of different classes. It means that a class

Composite can contain an object of another class Component. This type of

relationship is known as Has-A Relation.

 In composition one of the classes is composed of one or more instance of other

classes. In other words one class is container and other class is content and if you

delete the container object then all of its contents objects are also deleted.

Syntax:

class A :

V RajaSekhar CSE Dept 18

 # variables of class A

 # methods of class A

 ...

 ...

class B :

 # by using "object" we can access member's of class A.

 object = A()

 # variables of class B

 # methods of class B

 ...

 ...
Example:

class Component:

 def __init__(self):

 print('Component class object created...')

 def m1(self):

 print('Component class m1() method executed...')

class Composite:

 def __init__(self):

 self.obj1 = Component()

 print('Composite class object also created...')

 def m2(self):

 print('Composite class m2() method executed...')

 self.obj1.m1()

obj2 = Composite()

 obj2.m2()

OutPut:

Component class object created...

Composite class object also created...

Composite class m2() method executed...

 Component class m1() method executed...

Privacy or Python Access Modifiers:

 In most of the object-oriented languages access modifiers are used to limit the access

to the variables and functions of a class. Most of the languages use three types of

access modifiers, they are –

 Private

 Public

V RajaSekhar CSE Dept 19

 Protected.

 Just like any other object oriented programming language, access to variables or

functions can also be limited in python using the access modifiers. Python makes the

use of underscores to specify the access modifier for a specific data member and

member function in a class.

 Access modifiers play an important role to protect the data from unauthorized access

as well as protecting it from getting manipulated.

 When inheritance is implemented there is a huge risk for the data to get

destroyed(manipulated) due to transfer of unwanted data from the parent class to the

child class. Therefore, it is very important to provide the right access modifiers for

different data members and member functions depending upon the requirements.

Python: Types of Access Modifiers
 There are 3 types of access modifiers for a class in Python. These access modifiers

define how the members of the class can be accessed. Of course, any member of a

class is accessible inside any member function of that same class. Moving ahead to

the type of access modifiers, they are:

Access Modifier: Public
 The members declared as Public are accessible from outside the Class through an

object of the class.

Example:

class Student:

 def __init__(self,name,dept):

 self.name=name#Public attribute

 self.dept=dept#Public attribute

class Stud(Student):

 pass

s1=Student("Raj","CSE")

print("Name=",s1.name)

print("Dept=",s1.dept)

d=Stud("Srav","DS")

print("Name=",d.name)

print("Dept=",d.dept)

OutPut:

 Name=Raj

 Dept=CSE

Name=Srav

 Dept=DS
Access Modifier: Private

 These members are only accessible from within the class. No outside Access is

allowed.

V RajaSekhar CSE Dept 20

 It is also not possible to inherit the private members of any class (parent class) to

derived class (child class). Any instance variable in a class followed by self keyword

and the variable name starting with double underscore ie. self.__varName are the

private accessed member of a class.

Example:

class Student:

 def __init__(self, name, dept):

 self.__name = name # private

 self.__dept = dept # private

s1=Student("Raj","CSE")

print("Name=",s1.__name)

print("Dept=",s1.__dept)

OutPut: error

protected Access Modifier:
 Protected variables or we can say protected members of a class are restricted to be

used only by the member functions and class members of the same class. And also it

can be accessed or inherited by its derived class (child class).

 We can modify the values of protected variables of a class. The syntax we follow to

make any variable protected is to write variable name followed by a single

underscore (_) ie. _varName.

Example:

class Student:

 def __init__(self, name, dept):

 self._name = name # Protected

 self._dept = dept #Protected

class Stu(Student):

 pass

s1=Student("Raj","CSE")

print("Name=",s1._name)

print("Dept=",s1._dept)

s2=Stu("Srav","DS")

print("Name=",s2._name)

print("Dept=",s2._dept)

OutPut:

Name= Raj

Dept= CSE

Name= Srav

Dept= DS

V RajaSekhar CSE Dept 21

Polymorphism in Python

 Polymorphism is taken from the Greek words Poly (many) and morphism (forms). It

means that the same function name can be used for different types. This makes

programming easier.

 Polymorphism means having vivid or different forms. In the programming world,

Polymorphism refers to the ability of the function with the same name to carry

different functionality altogether.

Types of Polymorphism :

 Compile time Polymorphism
 Run time Polymorphism

Compile time Polymorphism or Method Overloading:
 Unlike many other popular object-oriented programming languages such as Java,

Python doesn‟t support compile-time polymorphism or method overloading. If a

class or Python script has multiple methods with the same name, the method defined

in the last will override the earlier one.

 Python doesn‟t use function arguments for method signature, that‟s why method

overloading is not supported in Python.

Example:

class OverloadDemo:

 def multiply(self,a,b):

 print(a*b)

 def multiply(self,a,b,c):

 print(a*b*c)

m=OverloadDemo()

m.multiply(5,10)

OutPut:

Traceback (most recent call last):

 File "F:\R20-python\lab\ac.py", line 7, in <module>

 m.multiply(5,10)

TypeError: multiply() missing 1 required positional argument: 'c'

Run time Polymorphism or Method Overriding:

 In Python, whenever a method having same name and arguments is used in both

derived class as well as in base or super class then the method used in derived class is

said to override the method described in base class. Whenever the overridden

method is called, it always invokes the method defined in derived class. The method

used in base class gets hidden.

Example:

V RajaSekhar CSE Dept 22

class methodOverride1:

 def display(self):

 print("method invoked from base class")

class methodOverride2(methodOverride1):

 def display(self):

 print("method invoked from derived class")

ob=methodOverride2()

ob.display()

OutPut:

 method invoked from derived class

Built in Functions for Classes, Instances, and Other Objects,

In Python we have different typed of built in functions in Python.

1. hasattr() Function

 The python hasattr() function returns true if an object has given named attribute.

Otherwise, it returns false.

Syntax: hasattr(object, attribute)

Parameters

 object: It is an object whose named attribute is to be checked.

 attribute: It is the name of the attribute that you want to search.

 Return:It returns true if an object has given named attribute. Otherwise, it returns

false.

Example:

class Demo:

 name="raj"

 dept="CSE"

obj=Demo()

print(hasattr(Demo,'name'))

 print(hasattr(Demo,'rollno'))

OutPut:

True

 False

2. getattr() Function

 The python getattr() function returns the value of a named attribute of an

object. If it is not found, it returns the default value.

Syntax: getattr(object, attribute, default)

Parameters:

V RajaSekhar CSE Dept 23

 object: An object whose named attribute value is to be returned.

 attribute: Name of the attribute of which you want to get the value.

 default (optional): It is the value to return if the named attribute does not

found.

Return:It returns the value of a named attribute of an object. If it is not found, it

returns the default value.

Example:

class Demo:

 name="raj"

 dept="CSE"

obj=Demo()

print("name=",getattr(Demo,'name'))

print("college=",getattr(Demo,'college',"MREC"))

OutPut:

 name= raj

college= MREC

3. setattr() Function

 Python setattr() function is used to set a value to the object's attribute. It takes

three arguments an object, a string, and an arbitrary value, and returns none.

It is helpful when we want to add a new attribute to an object and set a value

to it. The signature of the function is given below.

Syntax: setattr (object, name, value)

Parameters

 object: It is an object which allows its attributes to be changed.

 name : A name of the attribute.

 value : A value, set to the attribute.

Return:It returns None to the caller function.

Example:

class Demo:

 name=""

 dept=""

 id=0

 def __init__(self,name,dept,id):

 self.name=name

 self.dept=dept

 self.id=id

obj=Demo("Raj","CSE",1)

print(obj.name)

print(obj.dept)

print(obj.id)

V RajaSekhar CSE Dept 24

setattr(obj,'college','MREC')

print(obj.college)

OutPut:

 Raj

CSE

1

MREC

4. delattr() Function

 Python delattr() function is used to delete an attribute from a class. It takes

two parameters first is an object of the class and second is an attribute which

we want to delete. After deleting the attribute, it no longer available in the

class and throws an error if try to call it using the class object.

Syntax: delattr (object, name)

Parameters

 object: Object of the class which contains the attribute.

 name: The name of the attribute to delete. It must be a string.

Return: It returns a complex number.

Example:

class Demo:

 name=""

 dept=""

 id=0

 def __init__(self,name,dept,id):

 self.name=name

 self.dept=dept

 self.id=id

obj=Demo("Raj","CSE",1)

print(obj.name)

print(obj.dept)

print(obj.id)

setattr(obj,'college','MREC')

print(obj.college)

delattr(obj,'college')

print(obj.college)

OutPut:

Raj

CSE

1

MREC

Traceback (most recent call last):

 File "F:\R20-python\lab\ac.py", line 16, in <module>

V RajaSekhar CSE Dept 25

 print(obj.college)

 AttributeError: 'Demo' object has no attribute 'college'

5. isinstance() Function

 Python isinstance() function is used to check whether the given object is an

instance of that class. If the object belongs to the class, it returns True.

Otherwise returns False. It also returns true if the class is a subclass.

 The isinstance() function takes two arguments object and classinfo and returns

either True or False. The signature of the function is given below.

Syntax: isinstance(object, classinfo)

Parameters

 object: It is an object of string, int, float, long or custom type.

 classinfo: Class name.

Return:It returns boolean either True or False.

6. issubclass() function

 The issubclass() function returns True if the specified object is a subclass of

the specified object, otherwise False.

Syntax: issubclass(object, subclass)

Parameter

 object It is an object of string, int, float, long or custom type.

 subclass Name of the subclass

Return:It returns boolean either True or False.

Example:

class A:

 pass

class B(A):

 pass

b=B()

print("b is an instance of the class B:",isinstance(b,B))

 print("B is sub class of A Class:",issubclass(B,A))

OutPut:

b is an instance of the class B: True

 B is sub class of A Class: True

Types vs. Classes/Instances:

Properties Types Class

Origin Pre-defined data types User-defined data types

Stored

structure

Stored in a stack Reference variable is stored in

stack and the original object is

V RajaSekhar CSE Dept 26

stored in heap

When copied Two different variables is created along with

different assignment even though the both

variables having the same address if they are

pointing the same value

Two reference variable is

created but both are pointing

to the same object on the heap

When

changes are

made in the

copied

variable

Change does not reflect in the original ones. Changes reflected in the

original ones.

Default value Primitive datatypes having the default value

like 0 for int 0.0 for float etc.

No default value for the

reference variable which is

created for a class

Example a=15

print("Type of a=",type(a))

output:

Type of a= <class 'int'>

class A:

 def __init__(self,a):

 self.a=a

obj=A(10)

print("Type of obj=",type(obj))

output:

Type of obj= <class

'__main__.A'>

Delegation and Wrapping

 Delegation is the mechanism through which an actor assigns a task or part of a task

to another actor. This is not new in computer science, as any program can be split

into blocks and each block generally depends on the previous ones. Furthermore,

code can be isolated in libraries and reused in different parts of a program,

implementing this "task assignment". In an OO system the assignee is not just the

code of a function, but a full-fledged object, another actor.

 The main concept to retain here is that the reason behind delegation is code reuse.

We want to avoid code repetition, as it is often the source of regressions; fixing a bug

V RajaSekhar CSE Dept 27

in one of the repetitions doesn't automatically fix it in all of them, so keeping one

single version of each algorithm is paramount to ensure the consistency of a system.

 Delegation helps us to keep our actors small and specialised, which makes the whole

architecture more flexible and easier to maintain (if properly implemented).

Changing a very big subsystem to satisfy a new requirement might affect other parts

system in bad ways, so the smaller the subsystems the better (up to a certain point,

where we incur in the opposite problem, but this shall be discussed in another post).

Example:

class Dept:

 def __init__(self,insem,endsem):

 self.insem=insem

 self.endsem=endsem

 def marks(self):

 return self.insem+self.endsem

class student:

 def __init__(self,sname,year,insem,endsem):

 self.sname=sname

 self.year=year

 self.obj_Dept=Dept(insem,endsem)

 def tmarks(self):

 print("The Total Marks of %s"

%self.sname,self.obj_Dept.marks())

s=student('Raj','First',20,65)

s.tmarks()

 OutPut:

 The Total Marks of Raj 85

